如图,P是正方形ABCD所在平面外一点,PA⊥AB,PA⊥AD,点Q是PA的中点,PA=4,AB=2.(1)求证:PC⊥BD;(2)求点Q到BD的距离;(3)求点A到平面QBD的距离.-数学

题目简介

如图,P是正方形ABCD所在平面外一点,PA⊥AB,PA⊥AD,点Q是PA的中点,PA=4,AB=2.(1)求证:PC⊥BD;(2)求点Q到BD的距离;(3)求点A到平面QBD的距离.-数学

题目详情

如图,P是正方形ABCD所在平面外一点,PA⊥AB,PA⊥AD,点Q是PA的中点,PA=4,AB=2.
(1)求证:PC⊥BD;
(2)求点Q到BD的距离;
(3)求点A到平面QBD的距离.360优课网
题型:解答题难度:中档来源:不详

答案

(1)
360优课网
连接AC
∵PA⊥AB,PA⊥AD,AB∩AD=A
∴PA⊥平面ABCD(2分)
∴AC为斜线PC在平面ABCD内的射影
∵ABCD是正方形
∴AC⊥BD
∴PC⊥BD(4分)
(2)设AC∩BD=O,连接OQ
∵Q为PA中点,O为AC中点
∴OQPC
∵PC⊥BD
∴OQ⊥BD
∴OQ的长就是点Q到BD的距离(7分)
∵AB=2,PA=4∴AC=2
2

OA=
2
,QA=2
OQ=
QA2+OA2
=
6

即点Q到BD的距离为
6
(9分)
(3)过A作AH⊥OQ于H
∵BD⊥QO,BD⊥PA
∴BD⊥平面AOQ∴BD⊥AH
又AH⊥OQ
∴AH⊥平面QBD
∴AH的长就是点A到平面QBD的距离(12分)
在△QAO中,OQ=
6
,AQ=2,AO=
2

AH=class="stub"AQ ? AO
OQ
=
2
6
=
2
3
3
(14分)

更多内容推荐