如图,在直三棱柱ABC﹣中,AB=AC,点D是BC的中点.(1)求证:B∥平面AD;(2)如果点E是的中点,求证:平面BE⊥平面BC.-高三数学

题目简介

如图,在直三棱柱ABC﹣中,AB=AC,点D是BC的中点.(1)求证:B∥平面AD;(2)如果点E是的中点,求证:平面BE⊥平面BC.-高三数学

题目详情

如图,在直三棱柱ABC﹣中,AB=AC,点D是BC的中点.
(1)求证:B∥平面AD
(2)如果点E是的中点,求证:平面BE⊥平面BC
题型:解答题难度:中档来源:月考题

答案

证明:(1)连接C交A于点O,连接OD在△BC中,
∵点D是BC的中点,O是C的中点
B∥OD
∵OD平面ADB平面AD
B∥平面AD
(2)直三棱柱ABC﹣中,C⊥平面ABC
C⊥AD
在△ABC中,AD⊥BC
∵BC∩C=C
∴AD⊥平面BC
连接DE,
∵E是的中点
∴四边形BDE为平行四边形
B∥ED,B=ED
B∥A,B=A
∴ED∥A,ED=A
∴四边形ADE为平行四边形
E∥AD
E⊥平面BC
E平面BE
∴平面BE⊥平面BC

更多内容推荐