如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为______.-数学

题目简介

如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为______.-数学

题目详情

如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为______.
题型:填空题难度:中档来源:不详

答案

过D点作DH⊥AB,垂足为H,
∵在△ABC中,AC=BC=2,∠C=90°,
∴AB=
AC2+BC2
=2
2

∵点D为腰BC中点,
∴AD=
AC2+CD2
=
5

∵DE⊥AD,∠B=45°,
∴DH=HB=
2
2

∴AD2=AH•AE,
∴AE=
AD2
AH
=
(
5
)
2
2
2
-
2
2
=
5
2
3

EB=AB-AE=2
2
-
5
2
3
=
2
3

故答案为:
2
3

更多内容推荐