四棱锥中,⊥底面,,,.(Ⅰ)求证:⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.-高二数学

题目简介

四棱锥中,⊥底面,,,.(Ⅰ)求证:⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.-高二数学

题目详情

四棱锥中,⊥底面,,,.

(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积.
题型:解答题难度:偏易来源:不详

答案

(Ⅰ)见解析;(Ⅱ).

试题分析:(Ⅰ)通过在平面PAC内证明PA和AC均与BD垂直,由线面垂直的判定定理得出结论;(Ⅱ)由割补法知,故先求.处理的关键是利用图形分割.
试题解析:(Ⅰ)证明:因为BC=CD,即为等腰三角形,又,故.
因为底面,所以,从而与平面内两条相交直线都垂直,
⊥平面.
(Ⅱ)解:.
底面.
得三棱锥的高为,
故:

更多内容推荐