四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是()A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面B.若分别作△BAD和△CAD的边AD上的高

题目简介

四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是()A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面B.若分别作△BAD和△CAD的边AD上的高

题目详情

四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是(     )
A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面
B.若分别作△BAD和△CAD的边AD上的高,则这两条高长度相等
C.AB=AC且DB=DC
D.∠DAB=∠DAC
题型:单选题难度:偏易来源:不详

答案

A

试题分析:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,即BE,CE分别是AD边上的高,而BE,CE相交,故A错,选A.

更多内容推荐