如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD。(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的

题目简介

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD。(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的

题目详情

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD。
(1)判断△ABC的形状,并说明理由;
(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明。
题型:解答题难度:偏难来源:山东省中考真题

答案

解:(1)△ABC为等腰直角三角形。
如图1,在矩形ABED中,
∵点C是边DE的中点,且AB=2AD,
∴AD=DC=CE=EB,DD=DE=90°,
∴Rt△ADC≌Rt△BEC,
∴AC=BC,∠1=∠2=45°,
∴∠ACB=90°,
∴△ABC为等腰直角三角形;
(2)DE=AD+BE;
如图2,在Rt△ADC和Rt△CEB中,
∵∠1+∠CAD=90°,∠1+∠2=90°,
∴∠CAD=∠2,
又∵AC=CB,∠ADC=∠CEB=90°,
∴Rt△ADC≌Rt△CEB,
∴DC=BE,CE=AD,
∴DC+CE=BE+AD,即DE=AD+BE;
(3)DE=BE-AD。
如图3,Rt△ADC和Rt△CEB中,
∵∠1+∠CAD=90°,∠1+∠2=90°,
∴∠CAD=∠2,
又∵∠ADC=∠CEB=90°,AC=CB,
∴Rt△ADC≌Rt△CEB,
∴DC=BE,CE=AD,
∴DC-CE=BE-AD,即DE=BE-AD。


更多内容推荐