已知函数f(x)对于一切x、y∈R,都有f(xy)=f(x+y)+f(x-y).(Ⅰ)求证:f(x)在R上是偶函数;(Ⅱ)若f(x)在区间(-∞,0)上是减函数,且有f(2a2+a+1)<f(-2a2

题目简介

已知函数f(x)对于一切x、y∈R,都有f(xy)=f(x+y)+f(x-y).(Ⅰ)求证:f(x)在R上是偶函数;(Ⅱ)若f(x)在区间(-∞,0)上是减函数,且有f(2a2+a+1)<f(-2a2

题目详情

已知函数f(x)对于一切x、y∈R,都有f(xy)=f(x+y)+f(x-y).
(Ⅰ)求证:f(x)在R上是偶函数;
(Ⅱ)若f(x)在区间(-∞,0)上是减函数,且有f(2a2+a+1)<f(-2a2+4a-3),求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:函数f(x)对于一切x、y∈R,都有f(xy)=f(x+y)+f(x-y),
令x=0,得f(0)=f(y)+f(-y),…(1分)
再令y=x,得f(0)=f(x)+f(-x).…①…(2分)
令y=0,得f(0)=f(x)+f(x).…②…(3分)
①-②得f(-x)-f(x)=0,…(4分)
∴f(-x)=f(x).…(5分)
故f(x)在R上是偶函数.…(6分)
(Ⅱ)因为f(x)在R上是偶函数,
所以f(x)的图象关于y轴对称.…(7分)
又因为f(x)在区间(-∞,0)上是减函数,
所以f(x)在区间(0,+∞)上是增函数.…(8分)
2a2+a+1=2(a2+class="stub"1
2
a+class="stub"1
16
-class="stub"1
16
)+1=2(a+class="stub"1
4
)2+class="stub"7
8
>0

-2a2+4a-3=-2(a2-2a+1-1)-3=-2(a-1)2-1<0,
∴2a2-4a+3>0.…(9分)
∵f(-2a2+4a-3)=f(2a2-4a+3).
原不等式可化为f(2a2+a+1)<f(2a2-4a+3)…(10分)
∴2a2+a+1<2a2-4a+3.解之得a<class="stub"2
5
.…(11分)
故实数a的取值范围是a<class="stub"2
5
.…(12分)

更多内容推荐