如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。-高二数学

题目简介

如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。-高二数学

题目详情

如图,四面体ABCD中,O、E分别是BD、BC的中点,

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。
题型:解答题难度:偏易来源:不详

答案

(I)连结OC, 平面
(II)(III)

试题分析:(I)证明:连结OC


中,由已知可得
    
   平面
(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知
直线OE与EM所成的锐角就是异面直线AB与CD所成的角
中,

是直角斜边AC上的中线,
(III)解:设点E到平面ACD的距离为
中,
 而
点E到平面ACD的距离为
点评:本题还可用空间向量来证明计算

更多内容推荐