(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.-高二

题目简介

(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.-高二

题目详情

(本小题满分12分)

如图,四边形ABCD为正方形,QA⊥平面ABCDPDQAQA=AB=PD
(I)证明:PQ⊥平面DCQ
(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值.
题型:解答题难度:中档来源:不详

答案

解:(I)由条件知PDAQ为直角梯形
因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.
又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.
在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD
所以PQ⊥平面DCQ.   ………………6分
(II)设AB=a.
由题设知AQ为棱锥Q—ABCD的高,所以棱锥Q—ABCD的体积
由(I)知PQ为棱锥P—DCQ的高,而PQ=,△DCQ的面积为
所以棱锥P—DCQ的体积为
故棱锥Q—ABCD的体积与棱锥P—DCQ的体积的比值为1.…………12分

更多内容推荐