优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为()A.4B.5C.23D.1-数学
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为()A.4B.5C.23D.1-数学
题目简介
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为()A.4B.5C.23D.1-数学
题目详情
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为( )
A.4
B.
5
C.
2
3
D.1
题型:单选题
难度:偏易
来源:不详
答案
设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,
则OO1EO2为矩形,
于是对角线O1O2=OE,
而OE=
OA
2
-AE
2
=
5
2
-
3
2
=4.
故选:A.
上一篇 :
(12分)在四棱锥中,底面ABCD是
下一篇 :
(10分)用斜二测画法画底面半径为
搜索答案
更多内容推荐
(本题满分12分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.(1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。-高一数学
(本小题满分12分)如图,在四棱锥中,底面是矩形,平面,,,点为的中点,为中点.(1)求证:平面⊥平面;(2)求直线与平面所成的角的正弦值;(3)求点到平面的距离.-高二数学
设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是_______-高二数学
给出下面四个命题:①过平面外一点,作与该平面成角的直线一定有无穷多条②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行③对确定的两异面直线,过空间任一点有且-高三数学
如图,在四棱锥中,四边形为平行四边形,为上一点,且.(Ⅰ)求证:;(Ⅱ)若点为线段的中点,求证:.-高三数学
已知是不同的直线,是不同的平面,给出下列命题真命题是A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m//α,n//β,α//β,则m//nC.若m⊥α,n//β,α⊥β,则m⊥nD.若m//α,n⊥β,
半径为1的球面上有三点A、B、C,其中AB=1,BC=3,A、C两点间的球面距离为π2,则球心到平面ABC的距离为()A.14B.12C.22D.32-数学
(本小题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,-高三数学
(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.-高二
已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A.B.C.D.-高二数学
如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且==,则()(A)EF与GH互相平行(B)EF与GH异面(C)EF与GH的交点M可能在直线AC上,也可
已知直线和平面,且,则与的位置关系是-高二数学
设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则.其中真命题的个数是A.1B.2C.3D.4-高一数学
a,b,c是三条直线,且,a与c的夹角为,那么b与c的夹角为()-高二数学
在正方体中,下面结论错误的是()A.BD//平面B.C.D.异面直线AD与所成角为450-高一数学
已知m、是直线,a、β是平面,给出下列命题:(1)若l垂直于α内两条相交直线,则l⊥α;(2)若l平行于α,则l平行于α内的所有直线;(3)若mα,lβ,且l⊥m,则α⊥β;(4)若lβ,且l⊥α,则
(20)(本题满分14分)已知正四棱锥P-ABCD中,底面是边长为2的正方形,高为.M为线段PC的中点.(Ⅰ)求证:PA∥平面MDB;(Ⅱ)N为AP的中点,求CN与平面MBD所成角的正切值.-高三数学
(本小题满分12分)如图,平面平面ABCD,ABCD为正方形,是直角三角形,且,E、F、G分别是线段PA,PD,CD的中点.(1)求证:∥面EFC;(2)求异面直线EG与BD所成的角;(3)在线段CD
正方体ABCD—A1B1C1D1中,E、F分别是BB1、DD1的中点,则AA1与平面AEF所成角的余弦值为()A.B.C.D.-高三数学
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(I)求证:A1C//平面AB1D;(II)求二面角B—AB1—D的大小;(III)求点C到平面AB1D的距
四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.B.C.D.-高二数学
三棱锥的高为,若三个侧面两两垂直,则为△的()A.内心B.外心C.垂心D.重心-高二数学
如果直线l与平面不垂直,那么在平面内()A.不存在与l垂直的直线B.存在一条与l垂直的直线C.存在无数条与l垂直的直线D.任一条都与l垂直-高二数学
如图,在正方体中,分别为,,,的中点,则异面直线与所成的角等于()A.45°B.60°C.90°D.120°-高一数学
如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且.(1)求证:平面平面;(2)若二面角的余弦值为,设,求的值.-高三数学
(本题满分12分)如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.(1)求证:MN⊥平面ABN;(2)求二面角A—BN—
已知直线,平面,且,,给出下列命题(1)若,则(2)若,则(3)若,则(4)若,则其中正确的命题个数是()A.1B.2C.3D.4-高一数学
如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.-高一数学
(本小题满分12分)如图,平行四边形中,,将沿折起到的位置,使平面平面(I)求证:;(Ⅱ)求三棱锥的侧面积.-高一数学
下列说法正确的是().A.一条直线和一个平面平行,它就和这个平面内的任一条直线平行B.平行于同一平面的两条直线平行C.如果一个平面内的无数条直线平行于另一个平面,则这两个-高二数学
直线与平面不平行,则()A.与相交B.C.与相交或D.以上结论都不对-高二数学
已知a,b是两条不重合的直线,,是两个不重合的平面,下列命题中正确的是()A.,,则B.a,,,,则C.,,则D.当,且时,若∥,则∥-高三数学
如图,直线l⊥平面,垂足为O,已知在直角三角形ABC中,BC=1,AC=2,AB=.该直角三角形在空间做符合以下条件的自由运动:(1),(2).则B、O两点间的最大距离为.-高三数学
如图,几何体为正四棱锥,几何体为正四面体.、(1)求证:;(2)求与平面所成角的正弦值.-高三数学
(本小题满分14分)已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。(1)当A1P:PC1=1:3时,求cos(α+β)的大小
如图,四面体ABCD中,O、E分别是BD、BC的中点(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。-高二数学
(理科)如图,是边长为的正方形,和都与平面垂直,且,设平面与平面所成二面角为,则▲(文科)如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是-高二数学
(本题满分12分)已知平面//平面,AB、CD是夹在、间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.-高一数学
正三棱柱ABC-A1B1C1的各棱长都为1,M为CC1的中点,则点B1到截面A1BM的距离为______.-数学
已知直线m、n和平面α、β,若α⊥β,α∩β=m,nα,要使n⊥β,则应增加的条件是()A.m∥nB.n⊥mC.n∥αD.n⊥α-高二数学
设是空间中的一个平面,是三条不同的直线,①若;②若③若,则④若;则上述命题中正确的是()A.①②B.②③C.③④D.①④-高三数学
已知多面体ABC-DEFG,AB,AC,AD两两垂直,面ABC//面DEFG,面BEF//面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为()A.2B.4C.6D.8-高二数学
若是三个互不重合的平面,是一条直线,则下列命题中正确的是()A.若B.若C.若的所成角相等,则D.若上有两个点到α的距离相等,则-高二数学
(本小题满分12分)如图,四棱锥中,底面,四边形中,,,,,E为中点.(1)求证:CD⊥面PAC;(2)求:异面直线BE与AC所成角的余弦值;-高二数学
(本小题满分12分)如图,棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别为A1D1、A1B1、BC的中点,(1)求证:GC1//面AEF(2)求:直线GC1到面AEF的距离。-高二数学
如图,已知二面角α-l-β为120°,AB,CD,AB⊥于A,CD⊥于D,且AB=AD=CD=1,则BC=()A.B.C.1D.2-高二数学
如图,在正三棱柱ABC-A1B1C1中,AB=1。若二面角C-AB-C1的大小为60°,则点C到平面ABC1的距离为()。-高三数学
半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为______.-高一数学
如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(1)求证:平面⊥平面;(2)求三棱锥的体积;-高二数学
已知、、、分别是正方体的棱、、、的中点。求证:①∥平面;②平面∥平面-高一数学
返回顶部
题目简介
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为()A.4B.5C.23D.1-数学
题目详情
答案
则OO1EO2为矩形,
于是对角线O1O2=OE,
而OE=
故选:A.