半径为1的球面上有三点A、B、C,其中AB=1,BC=3,A、C两点间的球面距离为π2,则球心到平面ABC的距离为()A.14B.12C.22D.32-数学

题目简介

半径为1的球面上有三点A、B、C,其中AB=1,BC=3,A、C两点间的球面距离为π2,则球心到平面ABC的距离为()A.14B.12C.22D.32-数学

题目详情

半径为1的球面上有三点A、B、C,其中AB=1,BC=
3
,A、C两点间的球面距离为
π
2
,则球心到平面ABC的距离为(  )
A.
1
4
B.
1
2
C.
2
2
D.
3
2
题型:单选题难度:中档来源:不详

答案

∵球O的半径为1,A、C两点间的球面距离为class="stub"π
2
,∴∠AOC=class="stub"π
2

∴AC=
2

AB=1,BC=
3

∴∠BAC=class="stub"π
2

∴球心在平面ABC内的射影为BC的中点
∴球心到平面ABC的距离为
1-(
3
2
)2
=class="stub"1
2

故选B.

更多内容推荐