设是给定的正整数,有序数组()中或.(1)求满足“对任意的,,都有”的有序数组()的个数;(2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数.-高三数学

题目简介

设是给定的正整数,有序数组()中或.(1)求满足“对任意的,,都有”的有序数组()的个数;(2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数.-高三数学

题目详情

是给定的正整数,有序数组()中.
(1)求满足“对任意的,都有”的有序数组()的个数
(2)若对任意的,都有成立,求满足“存在,使得”的有序数组()的个数.
题型:解答题难度:中档来源:不详

答案

(1),(2).

试题分析:
(1)正确理解每一偶数项与前相邻奇数项是相反数,而与后相邻奇数项相等或相反;因此分组按(奇、偶)分为组,每组有2种可能,各组可能互不影响,共有种可能,
(2)在(1)的基础上,某些组可能为(2,2)或(-2,-2),需讨论这些组个数的情况,最少一个,最多个.另外条件“对任意的,都有成立”控制不能出现各组都为2或-2的情况,而是间隔出现(2,2)、(-2,-2).
试题解析:
解:(1)因为对任意的,都有,则
共有种,所以共有种不同的选择,所以.     5分
(2)当存在一个时,那么这一组有种,其余的由(1)知有,所有共有
当存在二个时,因为条件对任意的,都有成立得这两组共有
其余的由(1)知有,所有共有
依次类推得:.       10分

更多内容推荐