设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合,设c1≥c2≥c3≥c4≥c5,则c1-c5为[]A.20B.1
设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合M={x|f(x)=0}={x1,x2,...,x9}⊆N+,
设c1≥c2≥c3≥c4≥c5 ,则c1-c5为( )
题目简介
设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合,设c1≥c2≥c3≥c4≥c5,则c1-c5为[]A.20B.1
题目详情
设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合M={x|f(x)=0}={x1,x2,...,x9}⊆N+,
设c1≥c2≥c3≥c4≥c5 ,则c1-c5为( )
A.20
B.18
C.16
D.14
答案