设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合,设c1≥c2≥c3≥c4≥c5,则c1-c5为[]A.20B.1

题目简介

设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合,设c1≥c2≥c3≥c4≥c5,则c1-c5为[]A.20B.1

题目详情

设函数f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),设集合M={x|f(x)=0}={x1,x2,...,x9}⊆N+

设c1≥c2≥c3≥c4≥c5 ,则c1-c5为(      )


A.20
B.18
C.16
D.14
题型:单选题难度:中档来源:上海模拟题

答案

C

更多内容推荐