如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1.(1)求证:MN丄平面ABCD(2)求线段AB的长;(3)求二面

题目简介

如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1.(1)求证:MN丄平面ABCD(2)求线段AB的长;(3)求二面

题目详情

如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1.
(1) 求证:MN丄平面ABCD
(2) 求线段AB的长;
(3) 求二面角A—DE—B的平面角的正弦值.
题型:解答题难度:偏易来源:不详

答案

(Ⅰ)证明:∵平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB
EB⊥AB ∴EB⊥平面ABCD   又MN∥EB     
∴MN⊥面ABCD.                                             (3分)
(Ⅱ)由(Ⅰ)可知∠EDB为DE与平面ABCD所成的角   ∴∠EDB=30o
又在Rt△EBD中,EB=2MN=2,∠EBD=90o   ∴DE=
连结AE,可知∠DEA为DE与平面ABEF所成的角 ∴∠DEA=45o(5分)
在Rt△DAE中,∠DAE=90o   ∴AE=DE    cos∠DEA=2
在Rt△ABE中,.                 (7分)

(Ⅲ)方法一:过B作BO⊥AE于O点,过O作OH⊥DE于H,连BH
∵AD⊥平面ABEF    BO面ABEF
∴BO⊥平面ADE   ∴OH为BH在平面ADE内的射影
∴BH⊥DE  即∠BHO为所求二面角的平面角 (9分)
在Rt△ABE中,BO=
在Rt△DBE中,由BH·DE=DB·OE得BH=
∴sin∠BHO=

更多内容推荐