如图,已知在等腰Rt△BCD中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,H是BC边的中点,连接DH与BE相交于点G(1)试说明:△FBD≌

题目简介

如图,已知在等腰Rt△BCD中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,H是BC边的中点,连接DH与BE相交于点G(1)试说明:△FBD≌

题目详情

如图,已知在等腰Rt△BCD中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,H是BC边的中点,连接DH与BE相交于点G
(1)试说明:△FBD≌△ACD;
(2)试说明:△ABC是等腰三角形;
(3)试说明:CE=
1
2
BF;
(4)求BG:GE的值(直接写出答案).
题型:解答题难度:中档来源:不详

答案

证明:(1)在等腰Rt△BCD中,BD=CD,
∵∠BDC=90°,
∴∠BDC=∠ADC=90°,
∵在△FBD和△ACD中,
DA=DF
∠BDC=∠ADC
BD=CD

∴△FBD≌△ACD(SAS);

(2)∵△FBD≌△ACD,
∴∠DBF=∠DCA,
∵∠ADC=90°,
∴∠DAC+∠A=90°,
∴∠DBF+∠A=90°,
∴∠AEB=180°-(∠DBF+∠A)=90°,
∵BF平分∠DBC,
∴∠ABF=∠CBF,
∵在△ABE和△CBE中,
∠AEB=∠CEB=90°
BE=BE
∠ABF=∠CBF

∴△ABE≌△CBE(ASA),
∴AB=CB,
∴△ABC是等腰三角形;

(3)∵△FBD≌△ACD,
∴BF=AC,
∵△ABE≌△CBE,
∴AE=CE=class="stub"1
2
AC,
∴CE=class="stub"1
2
BF;

(4)连接CG,∵在等腰Rt△BCD中,H是BC边的中点,
∴DH垂直平分BC,
∴BG=CG,
∴∠GBC=∠GCB,
∴∠EGC=∠GBC+∠GCB=2∠GBC=45°,
∴△EGC是等腰直角三角形,
∴CG=
2
GE,
即BG=
2
CE,
∴BG:GE=
2

更多内容推荐