已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.-数学

题目简介

已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.-数学

题目详情

已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.
求证:(1)△ABD≌△CFD;
(2)BE⊥AC.360优课网
题型:解答题难度:中档来源:不详

答案

证明:(1)∵AD⊥BC,
∴∠ADC=∠FDB=90°.
∵∠ACB=45°,
∴∠ACB=∠DAC=45°,
∴AD=CD,
∵在△ABD和△CFD中,
∠ADB=∠CDF
AD=CD
∠BAD=∠FCD

∴△ABD≌△CFD(ASA),

(2)∵△ABD≌△CFD,
∴BD=FD,
∵∠FDB=90°,
∴∠FBD=∠BFD=45°,
∵∠ACB=45°,
∴∠BEC=90°,
∴BE⊥AC.

更多内容推荐