阅读下列材料:某同学在计算3(4+1)(42+1)时,把4写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1

题目简介

阅读下列材料:某同学在计算3(4+1)(42+1)时,把4写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1

题目详情

阅读下列材料:
某同学在计算3(4+1)(42+1)时,把4写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1。很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(22004+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(22004+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22004+1)=(22-1)(22+1)(24+1)(28+1)…(22004+1)=(24-1)(24+1)(28+1)…(22004+1)=…=(22004-1)(22004+1)=24008-1。
回答下列问题:
(1)请借鉴该同学的经验,计算:
(2)借用上面的方法,再逆用平方差公式计算:
题型:解答题难度:偏难来源:同步题

答案

解:(1)2;
(2)

更多内容推荐