设数列{an},an≠0,a1=56,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0(1)求证:{an-12}为

题目简介

设数列{an},an≠0,a1=56,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0(1)求证:{an-12}为

题目详情

设数列{an},an≠0,a1=
5
6
,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0
(1)求证:{an-
1
2
}
为等比数列;
(2)求{an}的通项公式并求前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)∵3(α+β)-αβ+1=0,
∴依题意,得3
an
an-1
-class="stub"1
an-1
=1(n≥2),
∴3an-1=an-1(n≥2),
∴3(an-class="stub"1
2
)=an-1-class="stub"1
2
(n≥2),
∴{an-class="stub"1
2
}是公比为class="stub"1
3
,首项为class="stub"5
6
-class="stub"1
2
=class="stub"1
3
的等比数列;
(2)由(1)知,an-class="stub"1
2
=class="stub"1
3
(class="stub"1
3
)
n-1
=(class="stub"1
3
)
n

∴an=class="stub"1
2
+(class="stub"1
3
)
n

∴Sn=a1+a2+…+an
=(class="stub"1
2
+class="stub"1
3
)+(class="stub"1
2
+(class="stub"1
3
)
2
)+…+(class="stub"1
2
+(class="stub"1
3
)
n

=class="stub"n
2
+
class="stub"1
3
[1-(class="stub"1
3
)
n
]
1-class="stub"1
3

=class="stub"n+1
2
-class="stub"1
3n

更多内容推荐