(理科)已知数列{an}的前n项和Sn满足Sn=aa-1(an-1)(a为常数且a≠0,a≠1,n∈N*).(1)求数列{an}的通项公式;(2)记bn=2Snan+1,若数列{bn}为等比数列,求a

题目简介

(理科)已知数列{an}的前n项和Sn满足Sn=aa-1(an-1)(a为常数且a≠0,a≠1,n∈N*).(1)求数列{an}的通项公式;(2)记bn=2Snan+1,若数列{bn}为等比数列,求a

题目详情

(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3
题型:解答题难度:中档来源:不详

答案

(1)由(a-1)Sn=aan-a ①
当n≥2时,(a-1)Sn-1=aan-1-a ②
由①-②得n≥2时,(a-1)an=aan-aan-1即an=aan-1
又a1=a≠0
∴数列{an}是以a为首项,a为公比的等比数列
∴an=an
(2)bn=
2Sn
an
+1=class="stub"2a
1-a
(class="stub"1
a
)
n
+class="stub"3a-1
a-1

b1=3,b2=class="stub"3a+2
a
b3=
3a2+2a+2
a2

又b22=b1•b3得(3a+2)2=3(3a2+2a+2)解得a=class="stub"1
3

a=class="stub"1
3
时,bn=3n显然为等比数列
a=class="stub"1
3

(3)由(2)得Cn=
3n
3n+1
+
3n+1
3n+1-1
=2-
2(3n-1)
(3n+1-1)(3n+1)

2(3n-1)
(3n+1-1)(3n+1)
2(3n-1)
(3n+1-3)(3n+1)
=
class="stub"2
3
3n+1
class="stub"2
3
3n

n
i=1
2(3i-1)
(3i+1-1)(3i+1)
n
i=1
class="stub"2
3
3i
=
class="stub"2
3
×class="stub"1
3
(1-class="stub"1
3n
)
1-class="stub"1
3
<class="stub"1
3

Tn>2n-class="stub"1
3

更多内容推荐