优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在△ABC中,内角A,B,C对边分别是a,b,c,已知c=1.(1)若C=π6,cos(θ+C)=35,0<θ<π,求cosθ;(2)若C=π3,sinC+sin(A-B)=3sin2B,求△ABC的
在△ABC中,内角A,B,C对边分别是a,b,c,已知c=1.(1)若C=π6,cos(θ+C)=35,0<θ<π,求cosθ;(2)若C=π3,sinC+sin(A-B)=3sin2B,求△ABC的
题目简介
在△ABC中,内角A,B,C对边分别是a,b,c,已知c=1.(1)若C=π6,cos(θ+C)=35,0<θ<π,求cosθ;(2)若C=π3,sinC+sin(A-B)=3sin2B,求△ABC的
题目详情
在△ABC中,内角A,B,C对边分别是a,b,c,已知c=1.
(1)若C=
π
6
,cos(θ+C)=
3
5
,0<θ<π,求cosθ;
(2)若C=
π
3
,sinC+sin(A-B)=3sin2B,求△ABC的面积.
题型:解答题
难度:中档
来源:不详
答案
(1)∵C=
class="stub"π
6
,cos(θ+C)=
class="stub"3
5
,0<θ<π,
∴sin(
θ+
class="stub"π
6
)=
1-
class="stub"9
25
=
class="stub"4
5
∴cosθ=cos[(
θ+
class="stub"π
6
)-
class="stub"π
6
]=cos(
θ+
class="stub"π
6
)cos
class="stub"π
6
+sin(
θ+
class="stub"π
6
)sin
class="stub"π
6
=
3
3
+4
10
;
(2)∵sinC+sin(A-B)=3sin2B,
∴sin(A+B)+sin(A-B)=6sinBcosB,
∴2sinAcosB=6sinBcosB,
∴cosB=0或sinA=3sinB,
∴B=
class="stub"π
2
或a=3b,
若B=
class="stub"π
2
,C=
class="stub"π
3
,则S=
class="stub"1
2
c•c•tanA=
3
6
;
若a=3b,C=
class="stub"π
3
,则由余弦定理得a2+b2-ab=1
∴
b
2
=
class="stub"1
7
,
∴S=
class="stub"1
2
absinC=
class="stub"3
28
3
.
上一篇 :
设函数f(x)=a⋅b,其中向量a=(m,co
下一篇 :
已知函数y=12cos2x+32sinx•co
搜索答案
更多内容推荐
已知平面直角坐标系中,A(cosx,sinx),B(1,1),OA+OB=OC,f(x)=|OC|2.(Ⅰ)求f(x)的最小正周期和对称中心;(Ⅱ)求f(x)在区间[0,2π]上的单调递增区间.-数学
式子2sinαcosα-cosα1+sin2α-sinα-cos2α等于()A.tanαB.1tanαC.-tanαD.-1tanα-数学
若三条线段的长为5、6、7,则用这三条线段()A.能组成直角三角形B.能组成锐角三角形C.能组成钝角三角形D.不能组成三角形-数学
设函数f(x)=(sinωx+cosωx)2+2cos2ωx-2(ω>2)的最小正周期为2π3.(1)求ω的值;(2)若把函数y=f(x)的图象向右平移π2个单位长度,得到了函数y=g(x)的图象,求
已知函数f(x)=sin2x+23sinxcosx+3cos2x.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)已知f(a)=3,且a∈(0,π),求a的值.-数学
已知f(x)=2cos2x+23sinxcosx+1.(1)求f(π4)的值;(2)若x∈[-π2,0]时,求f(x)的值域;(3)求y=f(-x)的单调递增区间.-数学
已知:tan(π4+a)=15,求sin2a-sin2a1-cos2a的值.-数学
在极坐标系下,已知点A(-2,-π2),B(2,3π4),O(0,0),则△ABO为()A.正三角形B.直角三角形C.锐角等腰三角形D.直角等腰三角形-数学
已知sinα+cosα=15,(0<α<π),求tanα的值.-数学
已知A(1,0),B(0,1),C(2,m).(1)若m=1,求证:△ABC是等腰直角三角形;(2)若∠ABC=60°,求m的值.-数学
cos(α+π)sin2(α+3π)tan(α+4π)tan(α-π)sin3(π2+α)的值为()A.1B.-1C.sinαD.tanα-数学
已知A、B、C是△ABC的三个内角,向量m=(1,-3),n=(cosA,sinA),且m•n=-1.(1)求角A;(2)若sinB+cosBsinB-cosB=3,求tanC的值.-数学
已知函数f(x)=cos4x-2sinxcosx-sin4x(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[0,π2]上的最大值和最小值.-数学
设函数f(x)=a•b,其中向量a=(cosx2,sinx2)(x∈R),向量b=(cosϕ,sinϕ)(|ϕ|<π2),f(x)的图象关于直线x=π6对称.(Ⅰ)求ϕ的值;(Ⅱ)若函数y=1+sin
已知△ABC中,cosB=b2+a2-c22ac,则△ABC为______三角形.-数学
已知A,B,C分别为△ABC的三个内角,那么“sinA>cosB”是“△ABC为锐角三角形”的______条件.-数学
已知α是△ABC的一个内角,且cosa=-1213,则sin2acos2a=______.-数学
cos(-π3)的值为()A.12B.-12C.32D.-32-数学
(1)已知sin(π4-α)=513,α∈(0,π4),求cos2αcos(π4+α)的值.(2)已知tanα=-12,求2sin(2α-π4)+11+tanα的值.-数学
已知tanα=2,求(1)sin(π-α)cos(2π-α)cos(-α+3π2)tan(-α-π)sin(-π-α)(2)3sin2α+4sinαcosα+5cos2α-数学
已知A,B,C是平面坐标内三点,其坐标分别为A(1,2),B(4,1),C(0,-1)(Ⅰ)求AB•AC和∠ACB大小,并判断△ABC形状;(Ⅱ)若M为BC中点,求|AM|.-数学
在△ABC中,角A、B、C对边的边长分别是a、b、c,下列条件中能够判断△ABC是等腰三角形的是()A.asinB=bsinAB.acosB=bsinAC.asinA=bsinBD.asinB=bco
1-2sin(π-3)cos(π+3)等于()A.-sin3-cos3B.sin3+cos3C.±(sin3+cos3)D.cos3-sin3-数学
已知函数f(x)=Asin(ωx+ϕ),(A>0,ω>0,0<ϕ<π2)图象关于点B(-π4,0)对称,点B到函数y=f(x)图象的对称轴的最短距离为π2,且f(π2)=1.(1)求A,ω,ϕ的值;(
已知函数f(x)=cos2(x-π6)-sin2x.(Ⅰ)求f(π12)的值;(Ⅱ)求函数f(x)在x∈[0,π2]的最大值.-数学
若sinA=2sinBcosC,那么△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形-数学
在△ABC中,角A,B,C的对边分别为a,b,c,且cosB=34.(Ⅰ)求sin2B2+sin2B的值;(Ⅱ)若b=3,当ac取最大值时,求△ABC的面积.-数学
已知cosθ=-23,θ∈(π2,π),求2sin2θ-cosθsinθ的值.-数学
在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A-C=π3.求sinB的值.以下公式供解题时参考:sinθ+sin∅=2sinθ+ϕ2cosθ-ϕ2,sinθ-sin∅=2cosθ
设函数f(x)=2sinxcosx-cos(2x-π6).(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调増区间;(3)当x∈[0,2π3]时,求函数f(x)的最大值及取得最大值时的x的值
已知:f(x)=cosx-cos(x+π3).(1)求函数f(x)在R上的最大值和最小值;(2)在三角形ABC中,a,b,c分别是角A,B,C的对边,且f(A)=1,三角形ABC的面积为63,b=4,
在锐角三角形ABC中,角A,B,C所对的边分别是a,b,c且tanB=3aca2+c2-b2(1)求B;(2)求sin(B+10°)[1-3tan(B-10°)]的值.-数学
设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形-数学
已知f(x)=2cos2x+23sinxcosx+a,a为实常数.(I)求f(x)的最小正周期;(II)若f(x)在[-π6,π3]上最大值与最小值之和为3,求a的值.-数学
已知函数f(x)=3sin(x-ϕ)cos(x-ϕ)-cos2(x-ϕ)(0≤ϕ≤π2)为偶函数.(I)求函数的单调减区间;(II)把函数的图象向右平移π6个单位(纵坐标不变),得到函数g(x)的图象
下列函数中,最小正周期为π的是()A.y=sinx•cosxB.y=cos22x-sin22xC.y=2cos2x2-1D.y=2tanx1-tan2x-数学
已知向量m=(2sinx,cosx),n=(3cosx,2cosx)定义函数f(x)=loga(m•n-1)(a>0,a≠1).(1)求函数f(x)的最小正周期;(2)确定函数f(x)的单调递增区间.
在△ABC中,角A、B、C的对边分别为a、b、c,且acosA=bcosB.(1)试判断△ABC的形状;(2)若△ABC的面积为3,且tanC+2csinAa=0,求a.-数学
已知函数f(x)=sinxcosx+sin2x.(Ⅰ)求f(π4)的值;(II)若x∈[0,π2],求f(x)的最大值及相应的x值.-数学
在△ABC中,a,b是它的两边长,S是△ABC的面积,若S=14(a2+b2),则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形-数学
在△ABC中,若b2tanA=a2tanB,则△ABC的形状是()A.直角三角形B.等腰或直角三角形C.等腰三角形D.等边三角形-数学
函数y=sin2x-sinxcosx的一个单调增区间是()A.[3π8,5π8]B.[π3,5π6]C.[-π8,π8]D.[π4,3π4]-数学
函数f(x)=2sinxcosx-23cos2x+3的图象为C:①图象C关于直线x=11π12对称;②函数f(x)在区间(-π12,5π12)内是增函数;③由y=2sin2x的图象向右平移π3个单位长
已知函数f(x)=asinxcosx-3acos2x+32a+b(1)当a>0时,写出函数的单调递减区间;(2)设x∈[0,π2],f(x)的最小值是-2,最大值是3,求实数a,b的值.-数学
△ABC中,a=2,b=3,c=4,则△ABC的形状是()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.是锐角或直角三角形-数学
已知三角形的三边是10以内(不包含10)的三个连续的正整数,则任取一个三角形是锐角三角形的概率是()A.59B.34C.23D.12-数学
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π,x∈R)f(x)=Asin(x+φ)的最大值是2,其图象经过点M(π3,1).(1)求f(x)的解析式;(2)已知α,β∈(0,π2),且f(
已知,且,则α=()。-高一数学
已知向量a=(3sinωx,cosωx),b=(cosωx,cosωx),其中ω>0,记函数f(x)=a•b-12已知f(x)的最小正周期为π.(1)求ω;(2)求f(x)的单调区间;对称轴方程;对称
已知向量a=(cosx2,sinx2),b=(cosx2,-cosx2),若函数f(x)=a•b-12(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)若f(a)=3210,求sin2a的值.-数学
返回顶部
题目简介
在△ABC中,内角A,B,C对边分别是a,b,c,已知c=1.(1)若C=π6,cos(θ+C)=35,0<θ<π,求cosθ;(2)若C=π3,sinC+sin(A-B)=3sin2B,求△ABC的
题目详情
(1)若C=
(2)若C=
答案
∴sin(θ+
∴cosθ=cos[(θ+
(2)∵sinC+sin(A-B)=3sin2B,
∴sin(A+B)+sin(A-B)=6sinBcosB,
∴2sinAcosB=6sinBcosB,
∴cosB=0或sinA=3sinB,
∴B=
若B=
若a=3b,C=
∴b2=
∴S=