设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心②若PA、PB、PC两两互相垂直,则H是△ABC的垂心③若∠ABC=90°,H是AC的

题目简介

设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心②若PA、PB、PC两两互相垂直,则H是△ABC的垂心③若∠ABC=90°,H是AC的

题目详情

设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心
②若PA、PB、PC两两互相垂直,则H是△ABC的垂心
③若∠ABC=90°,H是AC的中点,则PA=PB=PC
④若PA=PB=PC,则H是△ABC的外心
其中正确命题的命题是________                
题型:填空题难度:偏易来源:不详

答案

①②③④

更多内容推荐