如图,在矩形ABCD中,AB=8cm,AD=6cm,点F是CD延长线上一点,且DF=2cm。点P、Q分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向终点B运动,当一点运动到终点B时,另一点

题目简介

如图,在矩形ABCD中,AB=8cm,AD=6cm,点F是CD延长线上一点,且DF=2cm。点P、Q分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向终点B运动,当一点运动到终点B时,另一点

题目详情

如图,在矩形ABCD中,AB=8cm,AD=6cm,点F是CD延长线上一点,且DF=2cm。点P、Q分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向终点B运动,当一点运动到终点B时,另一点也停止运动。FP、FQ分别交AD于E、M两点,连结PQ、AC,设运动时间为t (s)。
(1)用含有t的代数式表示DM的长;
(2)设△FCQ的面积为y (cm2),求y与t之间的函数关系式;
(3)线段FQ能否经过线段AC的中点,若能,请求出此时t的值,若不能,请说明理由;
(4)设△FPQ的面积为S (cm2),求S与t之间的函数关系式,并回答,在t的取值范围内,S是如何随t的变化而变化的。
题型:解答题难度:偏难来源:吉林省期末题

答案

解: (1)
(2) S△FCQ=5t 
(3)
(4)


S随t的增大而减小。
即:从t=0,S=30变化到 t=6,S=6

更多内容推荐