(1)若复数(1+ai)2在复平面上对应的点在第四象限,试求实数a的取值范围.(2)已知z∈C,z+2i和z2-i都是实数.求复数z.-数学

题目简介

(1)若复数(1+ai)2在复平面上对应的点在第四象限,试求实数a的取值范围.(2)已知z∈C,z+2i和z2-i都是实数.求复数z.-数学

题目详情

(1)若复数(1+ai)2在复平面上对应的点在第四象限,试求实数a的取值范围.
(2)已知z∈C,z+2i和
z
2-i
都是实数.求复数z.
题型:解答题难度:中档来源:不详

答案

(1)由(1+ai)2=1+2ai+(ai)2=(1-a2)+2ai,
∵(z+ai)2在复平面上对应的点在第四象限,∴
1-a2>0
2a<0
,∴-1<a<0
∴,即实数a的取值范围是(-1,0).             
(2)设∵z=m+ni(m,n∈R),则z+2i=m+(n+2)i,
class="stub"z
2-i
=class="stub"m+ni
2-i
=
(m+ni)(2+i)
(2-i)(2+i)
=class="stub"2m-n
5
+class="stub"m+2n
5
i

∵z+2i和class="stub"z
2-i
都是实数,∴
n+2=0
class="stub"m+2n
5
=0
,解得
m=4
n=-2

∴z=4-2i.

更多内容推荐