函数和的图象关于y轴对称,我们定义函数和相互为“影像”函数。类似地,如果函数和的图象关于y轴对称,那么我们定义函数和互为“影像”函数。(1)请写出函数的“影像”函数:;(2)函-九年级数学

题目简介

函数和的图象关于y轴对称,我们定义函数和相互为“影像”函数。类似地,如果函数和的图象关于y轴对称,那么我们定义函数和互为“影像”函数。(1)请写出函数的“影像”函数:;(2)函-九年级数学

题目详情

函数的图象关于y轴对称,我们定义函数相互为“影像”函数。
类似地,如果函数的图象关于y轴对称,那么我们定义函数互为“影像”函数。
(1)请写出函数的“影像”函数:   
(2)函数     的“影像”函数是
(3)如果,一条直线与一对“影像”函数的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数的“影像”函数上的对应点的横坐标是1,求点B的坐标。
题型:解答题难度:中档来源:不详

答案

(1) (2);(3)

试题分析:(1)根据关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.则两个解析式的k值应互为相反数,得出答案即可;
(2)函数y=x2-2x+3的图象关于y轴对称的抛物线x互为相反数,y不变,得y=(-x)2-2(-x)+3=x2+2x+3,即可.
(3)首先作CC'、BB'、AA'垂直于x轴,再利用设点B(m,)、A(n,),得出A'B'=n-m,B′C′=m+,即可得出等式方程,求出m的值即可.
(1) 
(2)
(3)过点C作CC'垂直于x轴,垂足为C',过点B作BB'垂直于x轴,垂足为B',过点A作AA'垂直于x轴,垂足为A'.

设点,其中m>0,n>0.由题意,得 点C(−1,2)。
易知 CC'∥BB'∥AA',
又CB:AB=1:2,所以可得

解得(舍去负值),B
考点: 反比例函数综合题.

更多内容推荐