优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,在直三棱柱中,,,是的中点.(1)求证:平行平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.-高三数学
如图,在直三棱柱中,,,是的中点.(1)求证:平行平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.-高三数学
题目简介
如图,在直三棱柱中,,,是的中点.(1)求证:平行平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.-高三数学
题目详情
如图,在直三棱柱
中,
,
,
是
的中点.
(1)求证:
平行平面
;
(2)求二面角
的余弦值;
(3)试问线段
上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
题型:解答题
难度:偏易
来源:不详
答案
(1)只需证
∥
;(2)
;(3)点
为线段
中点时,
与
成
角.
试题分析:(Ⅰ)证明:连结
,交
于点
,连结
.
由
是直三棱柱,
得 四边形
为矩形,
为
的中点.
又
为
中点,所以
为
中位线,
所以
∥
,
因为
平面
,
平面
,
所以
∥平面
.
(Ⅱ)由
是直三棱柱,且
,故
两两垂直.
如图建立空间直角坐标系
.设
,
则
.
所以
,
设平面
的法向量为
,则有
所以
取
,得
.
易知平面
的法向量为
.
由二面角
是锐角,得
.
所以二面角
的余弦值为
.
(Ⅲ)假设存在满足条件的点
.
因为
在线段
上,
,
,故可设
,其中
.
所以
,
.
因为
与
成
角,所以
.
即
,解得
,舍去
.
所以当点
为线段
中点时,
与
成
角.
点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。
上一篇 :
(本小题满分14分)如图,在四面体
下一篇 :
(本小题满分12分)如图,在点上,过点
搜索答案
更多内容推荐
一个平面内有无数条直线平行于另一个平面,那么这两个平面A.一定平行B.一定相交C.平行或相交D.一定重合-高一数学
如图,在平行四边形中,于,,将沿折起,使.(1)求证:平面;(2)求平面和平面夹角的余弦值.-高二数学
(本题满分10分)如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定AB="AD"=2,,,(Ⅰ)求三棱锥A-BCD的体积;(Ⅱ)求点A到BC的距离.-高二数学
如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。-高二数学
(本小题满分14分)如图,已知几何体的三视图(单位:cm).(1)在这个几何体的直观图相应的位置标出字母;(2分)(2)求这个几何体的表面积及体积;(6分)(3)设异面直线、所成角为,求.-高三数学
如图,在正方体中,点是的中点.(1)求与所成的角的余弦值;(2)求直线与平面所成的角的余弦值.-高二数学
(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A
设为两个不重合的平面,为两条不重合的直线,现给出下列四个命题:①若,则;②若,则;③若则;④若则.其中,所有真命题的序号是.-高三数学
夹在的二面角内的一个球与二面角的两个面的切点到棱的距离都是6,则这个球的半径为_______.-高三数学
平行四边形的一个顶点A在平面a内,其余顶点在a的同侧,已知其中有两个顶点到a的距离分别为1和2,那么剩下的一个顶点到平面a的距离可能是:①1;②2;=3③3;④4;以上结论正确的为-数学
设是空间三条直线,是空间两个平面,则下列命题中,逆命题不正确的是()A.当时,若,则B.当时,若,则C.当且是在内的射影时,若,则D.当且时,若,则-高二数学
正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为,底面对角线的长为,则侧面与底面所成的二面角等于-高二数学
(本题满分14分)如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.⑴求证:;⑵如果点为线段的中点,求证:∥平面.-高二数学
一个多面体的直观图和三视图如下:(其中分别是中点)(1)求证:平面;(2)求多面体的体积.-高二数学
(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,(1)求证:MN//平面PAD(2)求点B到平面AMN的距离-高三数学
已知球的半径为5,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为6,则两圆的圆心距为()A.4B.5C.23D.1-数学
(10分)用斜二测画法画底面半径为2cm,高为3cm的圆锥的直观图.-高一数学
(本题满分12分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.(1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。-高一数学
(本小题满分12分)如图,在四棱锥中,底面是矩形,平面,,,点为的中点,为中点.(1)求证:平面⊥平面;(2)求直线与平面所成的角的正弦值;(3)求点到平面的距离.-高二数学
设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是_______-高二数学
给出下面四个命题:①过平面外一点,作与该平面成角的直线一定有无穷多条②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行③对确定的两异面直线,过空间任一点有且-高三数学
如图,在四棱锥中,四边形为平行四边形,为上一点,且.(Ⅰ)求证:;(Ⅱ)若点为线段的中点,求证:.-高三数学
已知是不同的直线,是不同的平面,给出下列命题真命题是A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m//α,n//β,α//β,则m//nC.若m⊥α,n//β,α⊥β,则m⊥nD.若m//α,n⊥β,
半径为1的球面上有三点A、B、C,其中AB=1,BC=3,A、C两点间的球面距离为π2,则球心到平面ABC的距离为()A.14B.12C.22D.32-数学
(本小题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,-高三数学
(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.-高二
已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A.B.C.D.-高二数学
如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且==,则()(A)EF与GH互相平行(B)EF与GH异面(C)EF与GH的交点M可能在直线AC上,也可
已知直线和平面,且,则与的位置关系是-高二数学
设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则.其中真命题的个数是A.1B.2C.3D.4-高一数学
a,b,c是三条直线,且,a与c的夹角为,那么b与c的夹角为()-高二数学
在正方体中,下面结论错误的是()A.BD//平面B.C.D.异面直线AD与所成角为450-高一数学
已知m、是直线,a、β是平面,给出下列命题:(1)若l垂直于α内两条相交直线,则l⊥α;(2)若l平行于α,则l平行于α内的所有直线;(3)若mα,lβ,且l⊥m,则α⊥β;(4)若lβ,且l⊥α,则
(20)(本题满分14分)已知正四棱锥P-ABCD中,底面是边长为2的正方形,高为.M为线段PC的中点.(Ⅰ)求证:PA∥平面MDB;(Ⅱ)N为AP的中点,求CN与平面MBD所成角的正切值.-高三数学
(本小题满分12分)如图,平面平面ABCD,ABCD为正方形,是直角三角形,且,E、F、G分别是线段PA,PD,CD的中点.(1)求证:∥面EFC;(2)求异面直线EG与BD所成的角;(3)在线段CD
正方体ABCD—A1B1C1D1中,E、F分别是BB1、DD1的中点,则AA1与平面AEF所成角的余弦值为()A.B.C.D.-高三数学
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(I)求证:A1C//平面AB1D;(II)求二面角B—AB1—D的大小;(III)求点C到平面AB1D的距
四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.B.C.D.-高二数学
三棱锥的高为,若三个侧面两两垂直,则为△的()A.内心B.外心C.垂心D.重心-高二数学
如果直线l与平面不垂直,那么在平面内()A.不存在与l垂直的直线B.存在一条与l垂直的直线C.存在无数条与l垂直的直线D.任一条都与l垂直-高二数学
如图,在正方体中,分别为,,,的中点,则异面直线与所成的角等于()A.45°B.60°C.90°D.120°-高一数学
如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且.(1)求证:平面平面;(2)若二面角的余弦值为,设,求的值.-高三数学
(本题满分12分)如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.(1)求证:MN⊥平面ABN;(2)求二面角A—BN—
已知直线,平面,且,,给出下列命题(1)若,则(2)若,则(3)若,则(4)若,则其中正确的命题个数是()A.1B.2C.3D.4-高一数学
如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.-高一数学
(本小题满分12分)如图,平行四边形中,,将沿折起到的位置,使平面平面(I)求证:;(Ⅱ)求三棱锥的侧面积.-高一数学
下列说法正确的是().A.一条直线和一个平面平行,它就和这个平面内的任一条直线平行B.平行于同一平面的两条直线平行C.如果一个平面内的无数条直线平行于另一个平面,则这两个-高二数学
直线与平面不平行,则()A.与相交B.C.与相交或D.以上结论都不对-高二数学
已知a,b是两条不重合的直线,,是两个不重合的平面,下列命题中正确的是()A.,,则B.a,,,,则C.,,则D.当,且时,若∥,则∥-高三数学
如图,直线l⊥平面,垂足为O,已知在直角三角形ABC中,BC=1,AC=2,AB=.该直角三角形在空间做符合以下条件的自由运动:(1),(2).则B、O两点间的最大距离为.-高三数学
返回顶部
题目简介
如图,在直三棱柱中,,,是的中点.(1)求证:平行平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.-高三数学
题目详情
(1)求证:
(2)求二面角
(3)试问线段
答案
试题分析:(Ⅰ)证明:连结
由
得 四边形
又
所以
因为
所以
(Ⅱ)由
如图建立空间直角坐标系
则
所以
设平面
所以
易知平面
由二面角
所以二面角
(Ⅲ)假设存在满足条件的点
因为
所以
因为
即
所以当点
点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。