(本题满分12分)如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE.(2)设点M为线段AB的中点,点N为线段-高三数学

题目简介

(本题满分12分)如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE.(2)设点M为线段AB的中点,点N为线段-高三数学

题目详情

(本题满分12分)
如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE.
(2)设点M为线段AB的中点,点N为线段
题型:解答题难度:偏易来源:不详

答案


证明:(1)因为BC⊥平面ABE,AE⊂平面ABE, 所以AE⊥BC.
又BF⊥平面ACE,AE⊂平面ACE,所以AE⊥BF,
又BF∩BC=B,所以AE⊥平面BCE.
又BE⊂平面BCE,所以AE⊥BE.              ……………………….6分
(2)取DE的中点P,连结PA、PN,因为点N为线段CE的中点,
所以PN∥DC,且PN=DC.
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM∥DC,且AM=DC,
所以PN∥AM,且PN=AM,故四边形AMNP是平行四边形,所以MN∥AP.
而AP⊂平面DAE,MN⊄平面DAE,  所以MN∥平面DAE.     ……………………….12分

更多内容推荐