如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2(I)求证:平面ECD⊥平面BCD(II)求二面角D-EC-B的正切值(III)求三棱锥A-ECD的体积-高

题目简介

如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2(I)求证:平面ECD⊥平面BCD(II)求二面角D-EC-B的正切值(III)求三棱锥A-ECD的体积-高

题目详情

如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2
(I)求证:平面ECD⊥平面BCD
(II)求二面角D-EC-B的正切值
(III)求三棱锥A-ECD的体积
题型:解答题难度:偏易来源:不详

答案

证明:(I)分别取CD,CB的中点F,G,连结EF、FG,AG,易证AG⊥面CBD,AG∥EF, ∴平面ECD⊥平面BCD

(II)解:连结BF,则BF⊥CD,由(I)知,BF⊥面ECD,过F作FM⊥EC,垂足为M,连结MB,则∠BMF为二面角D—EC—B的平面角,由题意知,

(III)

更多内容推荐