求证:a2-bc(a+b)(a+c)+b2-ca(b+c)(b+a)=ab-c2(c+a)(c+b)-数学

题目简介

求证:a2-bc(a+b)(a+c)+b2-ca(b+c)(b+a)=ab-c2(c+a)(c+b)-数学

题目详情

求证:
a2-bc
(a+b)(a+c)
+
b2-ca
(b+c)(b+a)
=
ab-c2
(c+a)(c+b)
题型:解答题难度:中档来源:不详

答案

证明:∵
a2-bc
(a+b)(a+c)
=
a2+ac-ac-bc
(a+b)(a+c)
=
a(a+c)-c(a+b)
(a+b)(a+c)
=class="stub"a
a+b
-class="stub"c
a+c

b2-ca
(b+c)(b+a)
=class="stub"b
b+c
-class="stub"a
b+a

c2-ab
(c+a)(c+b)
=class="stub"c
c+a
-class="stub"b
b+c

∴左-右=
a2-bc
(a+b)(a+c)
+
b2-ca
(b+c)(b+a)
+
c2-ab
(c+a)(c+b)
=class="stub"a
a+b
-class="stub"c
a+c
+class="stub"b
b+c
-class="stub"a
b+a
+class="stub"c
c+a
-class="stub"b
b+c
=0,
∴等式成立.

更多内容推荐