已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是()A.a≥98B.a≥98或a=0C.a<98或a=0D.a<98-数学

题目简介

已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是()A.a≥98B.a≥98或a=0C.a<98或a=0D.a<98-数学

题目详情

已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是(  )
A.a≥
9
8
B.a≥
9
8
或a=0
C.a<
9
8
或a=0
D.a<
9
8
题型:单选题难度:中档来源:不详

答案

∵集合A={x|ax2-3x+2=0}至多有一个元素,
分类讨论:
①当a=0时,A={x|-3x+2=0}只有一个元素,符合题意;
②当a≠0时,要A={x|ax2-3x+2=0}至多有一个元素,
则必须方程:ax2-3x+2=0有两个相等的实数根或没有实数根,
∴△≤0,得:9-8a≤0,∴a≥class="stub"9
8

综上所述:a≥class="stub"9
8
或a=0.
故选B.

更多内容推荐