BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5-高一数学

题目简介

BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5-高一数学

题目详情

BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是(  )
A.8B.7C.6D.5
题型:单选题难度:偏易来源:不详

答案

A

试题分析:因为AP⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,
又PD⊥BC于D,连接AD,PD∩PA=A,所以BC⊥平面PAD,又AD⊂平面PAD,所以BC⊥AD;
又BC是Rt△ABC的斜边,所以∠BAC为直角,所以图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故答案为:8。
点评:本题着重考查了线面垂直性质与判定定理的应用,考查细心分析问题能力,解决问题的能力,属于中档题。

更多内容推荐