对于函数,若存在区间,使得,则称区间为函数的一个“好区间”.给出下列4个函数:①;②;③;④.其中存在“好区间”的函数是.(填入所有满足条件函数的序号)-高三数学

题目简介

对于函数,若存在区间,使得,则称区间为函数的一个“好区间”.给出下列4个函数:①;②;③;④.其中存在“好区间”的函数是.(填入所有满足条件函数的序号)-高三数学

题目详情

对于函数,若存在区间,使得,则称区间为函数的一个“好区间”.给出下列4个函数:
;②;③;④
其中存在“好区间”的函数是     .(填入所有满足条件函数的序号)
题型:填空题难度:中档来源:不详

答案

②③④

试题分析:①函数上是单调增函数,若函数在上存“好区间”则必有,即方程 有两个根,令 
上恒成立,所以函数上为减函数,则函数上至多一个零点,即方程上不可能有两个解,又因为函数的值域为,所以当时,方程无解.所以函数没有“好区间”;
②对于函数,该函数在上是增函数由幂函数的性质我们易得,时, ,所以为函数的一个“好区间”.
③对于函数,所以函数的增区间有,减区间是,取,此时,所以函数上的值域了是,则为函数的一个“好区间”;
④函数在定义域上为增函数,若有“好区间”  则也就是函数有两个零点,显然是函数的一个零点,由
得,,函数上为减函数;由,得,函数在上为增函数.所以的最大值为,则该函数
上还有一个零点.所以函数存在“好区间”.

更多内容推荐