设a=(cosx,1),b=(sinx,2)(1)若a∥b,求(sinx+cosx)2的值(2)若f(x)=(a-b)•a,求f(x)在[0,π]上的递减区间.-数学

题目简介

设a=(cosx,1),b=(sinx,2)(1)若a∥b,求(sinx+cosx)2的值(2)若f(x)=(a-b)•a,求f(x)在[0,π]上的递减区间.-数学

题目详情

a
=(cosx,1),
b
=(sinx,2)

(1)若
a
b
,求(sinx+cosx)2的值
(2)若f(x)=(
a
-
b
)•
a
,求f(x)在[0,π]上的递减区间.
题型:解答题难度:中档来源:湖北模拟

答案

(1)∵
a
b
∴2cosx-sinx=0∴tanx=2

(sinx+cosx)2=sin2x+2sinxcosx+cos2x=cos2x•(tan2x+2tanx+1)=class="stub"1
1+tan2x
(tan2x+2tanx+1)=class="stub"9
5

(2)f(x)=cos2x-sinxcosx-1=-
2
2
sin(2x-class="stub"π
4
)-class="stub"1
2

2kπ-class="stub"π
2
≤2x-class="stub"π
4
≤2kπ+class="stub"π
2

kπ-class="stub"π
8
≤x≤kπ+class="stub"3π
8
k∈z
∵x∈[0,π]∴令k=0,1得f(x)在区间[0,π]上的递减区间是[0,class="stub"3π
8
],[class="stub"7π
8
,π]

更多内容推荐