如图a所示,水平直线MN下方有竖直向下的匀强电场,现将一重力不计、比荷qm=106C/kg的负电荷于电场中的.点由静止释放,经过π15×10-5s后电荷以v0=1.5X104m/sS的速度通过MN进人

题目简介

如图a所示,水平直线MN下方有竖直向下的匀强电场,现将一重力不计、比荷qm=106C/kg的负电荷于电场中的.点由静止释放,经过π15×10-5s后电荷以v0=1.5X104m/sS的速度通过MN进人

题目详情

如图a所示,水平直线MN下方有竖直向下的匀强电场,现将一重力不计、比荷
q
m
=106C/kg的负电荷于电场中的.点由静止释放,经过
π
15
×10-5s后电荷以v0=1.5X104m/sS的速度通过MN进人其上方的均匀磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化.图中以垂直纸面向里为正,电荷通过MN时为t=0时刻.求:
(1)匀强电场的电场强度E及O点与直线MN之间的距离;
(2)如果在O点正右方d=68cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板的时间.
题型:问答题难度:中档来源:不详

答案

(1)电荷在电场中做匀减速直线运动,设其在电场中运动的时间为tE,
根据动量定理可知,mv0=qEtE
解得,E=
mvo
qtE
=class="stub"4.5
×104N/C=7.2×103N/C

O点与直线MN之间的距离d=class="stub"1
2
a
t2E
=class="stub"π
2
cm=1.57cm

(2)当磁场垂直纸面向里时,
电荷运动的半径r1=
mvo
qB1
=
10-6×1.5×104
0.3
m=5cm

周期T1=class="stub"2xm
qB1
=
2π×10-6
0.3
8=class="stub"2π
3
×10-6S

当磁场垂直纸面向外时,
电荷运动的半径r2=
mvo
qB2
=
10-6×1.5×104
0.5
m=3cm

周期T2=class="stub"2πm
qB2
=class="stub"2πm
qB2
=
2π×10-6
0.5
5=class="stub"2π
5
×10-58

根据电荷的运动情况可知,电荷到达挡板前运动的完整周期数为15个,即沿ON运动的距离S=15△d=60cm,最后8cm的距离
如图所示,r1+r1cosa=d-S
解得cosα=0.6则α=53°
故电荷运动的总时间
T=tk+15TB+class="stub"1
2
T1-class="stub"53
360
T1

=(12+class="stub"163
540
)x×10-5S=3.86×10-4S

答:(1)匀强电场的电场强度7.2×103N/C及O点与直线MN之间的距离1.57cm;
(2)如果在O点正右方d=68cm处有一垂直于MN的足够大的挡板,则电荷从O点出发运动到挡板的时间3.86×10-4s.

更多内容推荐