如图,P是△ABC所在平面外一点,且PA⊥平面ABC.若O和Q分别是△ABC和△PBC的垂心,试证:OQ⊥平面PBC.-数学

题目简介

如图,P是△ABC所在平面外一点,且PA⊥平面ABC.若O和Q分别是△ABC和△PBC的垂心,试证:OQ⊥平面PBC.-数学

题目详情

如图,P 是△ABC所在平面外一点,且PA⊥平面ABC.若O和Q分别是△ABC和△PBC的垂心,试证:OQ⊥平面PBC.360优课网
题型:解答题难度:中档来源:不详

答案

证明:∵O是△ABC的垂心,∴BC⊥AE.∵PA⊥平面ABC,根据三垂线定理得BC⊥PE.
∴BC⊥平面PAE.∵Q是△PBC的垂心,故Q在PE上,则OQ?平面PAE,∴OQ⊥BC.
∵PA⊥平面ABC,BF?平面ABC,∴BF⊥PA,又∵O是△ABC的垂心,
∴BF⊥AC,故BF⊥平面PAC.因而FM是BM在平面PAC内的射影.
因为BM⊥PC,据三垂线定理的逆定理,FM⊥PC,
从而PC⊥平面BFM.又OQ?平面BFM,所以OQ⊥PC.
综上知OQ⊥BC,OQ⊥PC,
所以OQ⊥平面PBC.

更多内容推荐