如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.(1)求证:直线EF∥平面BC1A1;(2)求证:EF⊥B1C.-高二数学

题目简介

如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.(1)求证:直线EF∥平面BC1A1;(2)求证:EF⊥B1C.-高二数学

题目详情

如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.
(1)求证:直线EF∥平面BC1A1
(2)求证:EF⊥B1C.
题型:解答题难度:中档来源:江苏期中题

答案

解:(1)∵E、F分别为AB、AA1的中点,∴EF∥A1B
∵EF平面BC1A1,A1B平面BC1A1∴EF∥平面BC1A1.
(2)∵∠ACB=90°,∴AC⊥BC,
∵三棱柱ABC﹣A1B1C1为直三棱柱,∴AC⊥CC1,
∴AC⊥平面BB1C1C,∴AC⊥B1C,
又∵A1C1∥AC,∴A1C1⊥B1C,∵BC=CC1,BC⊥CC1,∴BC1⊥B1C
∴B1C⊥平面BA1C1,∴B1C⊥A1B
由(1)知,EF∥A1B
∴EF⊥B1C.

更多内容推荐