直角三角形ABC中∠C=90°,PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.求证:①BC⊥平面PAC;②PB⊥平面AMN.-数学

题目简介

直角三角形ABC中∠C=90°,PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.求证:①BC⊥平面PAC;②PB⊥平面AMN.-数学

题目详情

直角三角形ABC中∠C=90°,PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
求证:①BC⊥平面PAC;
②PB⊥平面AMN.360优课网
题型:解答题难度:中档来源:不详

答案

证明:①∵直角三角形ABC中∠C=90°,
∴AC⊥BC
又∵PA⊥平面ABC,
∴PA⊥BC
又由PA∩AC=A
∴BC⊥平面PAC;
②由①中结论得:BC⊥AN
又∵AN⊥PC于N.BC∩PC=C
∴AN⊥平面PBC,又由PB?平面PBC,
∴AN⊥PB,又由AM⊥PB于M,AN∩AM=A
∴PB⊥平面AMN

更多内容推荐