(1)证明:∵四边形ABCD为平行四边形, ∴AB∥CD,AD∥BC,AD=BC. ∴∠AGD=∠CDG,∠DCF=∠BFC. ∵DG、CF分别平分∠ADC和∠BCD, ∴∠CDG=∠ADG,∠DCF=∠BCF. ∴∠ADG=∠AGD,∠BFC=∠BCF ∴AD=AG,BF=BC. ∴AF=BG; (2)∵AD∥BC, ∴∠ADC+∠BCD=180°, ∵DG、CF分别平分∠ADC和∠BCD, ∴∠EDC+∠ECD=90°. ∴∠DEC=90°. ∴∠FEG=90°. 因此我们只要保证添加的条件使得EF=EG就可以了. 我们可以添加∠GFE=∠FGD, 四边形ABCD为矩形,DG=CF等等. |
题目简介
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角
题目详情
(1)求证:AF=GB;
(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.