①∵CD是斜边AB上的高,∠ACB=90°, ∴∠CDB=90°, ∴∠ACD+∠BCD=90°,∠BCD+∠B=90°, ∴∠ACD=∠B, ∴①正确; ②∵AE平分∠CAB, ∴∠CAE=∠BAE, ∵∠C=90°,EF⊥AB, ∴CE=FE, ∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B, ∵∠ACD=∠B, ∴∠CHE=∠CEA, ∴CH=CE, 即:CH=CE=EF,∴②正确; ③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF, ∴Rt△ACE≌Rt△AFE, ∴AC=AF,∴③正确; ④∵CH=EF,∴CH≠HD,∴④错误; ⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误. 故选C. |
题目简介
如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中正确的有()①∠ACD=∠B②CH=CE=EF③AC=AF④CH=HD⑤BE=CH.A.1B.2C.3D
题目详情
①∠ACD=∠B ②CH=CE=EF ③AC=AF ④CH=HD ⑤BE=CH.