已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R(1)求函数图象的对称中心(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f(β)]2-2=0

题目简介

已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R(1)求函数图象的对称中心(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f(β)]2-2=0

题目详情

已知函数f(x)=sin(x+
4
)+cos(x-
4
),x∈R
(1)求函数图象的对称中心
(2)已知cos(β-α)=
4
5
,cos(β+α)=-
4
5
0<α<β≤
π
2
,求证:[f(β)]2-2=0.
(3)求f(
π
4
)+f(
4
)+f(
4
)+f(π)+…f(
2011π
4
)
的值.
题型:解答题难度:中档来源:不详

答案

解析:(1)∵f(x)=
2
2
sinx-
2
2
cosx-
2
2
cosx+
2
2
sinx
=
2
(sinx-cosx)
=2sin(x-class="stub"π
4
),
∴x-class="stub"π
4
=kπ,即x=kπ+class="stub"π
4

∴(kπ+class="stub"π
4
,0)(k∈Z)为对称中心;
(2)∵0<α<β≤class="stub"π
2

class="stub"π
2
>β-α>0,π>β+α>0,
∵cos(β-α)=class="stub"4
5

∴sin(β-α)=class="stub"3
5

∵cos(α+β)=-class="stub"4
5

∴sin(α+β)=class="stub"3
5

∴sin2β=sin[(α+β)-(α-β)]=sin(α+β)cos(α-β)-cos(α+β)sin(α-β)=class="stub"3
5
class="stub"4
5
-(-class="stub"4
5
)•(-class="stub"3
5
)=0,
[f(β)]2-2=4sin2(β-class="stub"π
4
)
-2=2[1-cos(2β-class="stub"π
2
)]=-2sin2β=0,
所以,结论成立.
(3)∵f(x)=2sin(x-class="stub"π
4
),
∴f(class="stub"π
4
)+f(class="stub"π
2
)+f(class="stub"3π
4
)+f(π)+f(class="stub"5π
4
)+f(class="stub"6π
4
)+f(class="stub"7π
4
)+f(class="stub"8π
4
)=0,
∴原式=251[f(class="stub"π
4
)+f(class="stub"π
2
)+f(class="stub"3π
4
)+f(π)+f(class="stub"5π
4
)+f(class="stub"6π
4
)+f(class="stub"7π
4
)+f(class="stub"8π
4
)]+f(class="stub"π
4
)+f(class="stub"π
2
)+f(class="stub"3π
4

=0+
2
+2
=2+
2

更多内容推荐