已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(
题目简介
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(
题目详情
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
答案
图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,
又∵∠C=90°,
∴DM∥BC,DN∥AC,
∵D为AB边的中点,
由中位线定理可知:DN=
∵AC=BC,
∴MD=ND,
∵∠EDF=90°,
∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,
∴∠MDE=∠NDF,
∴△DME≌△DNF,
∴S△DME=S△DNF,
∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,
由以上可知S四边形DMCN=
∴S△DEF+S△CEF=
图3不成立.
证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)
S△DEF=S△DBF+S四边形DBFE,
=S△DEC+S四边形DBFE,
=S五边形DBFEC,
=S△CFE+S△DBC,
=S△CFE+
∴S△DEF﹣S△CFE=
故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=