以Rt△AOB的直角边OA、OB为y轴,x轴建立直角坐标系,AO=b,BO=a,(a>b),Q是边OB上的动点,点Q不与B、O重合,点P是AB的中点.(1)请写出A、B的坐标;(2)若以点C、P、Q为

题目简介

以Rt△AOB的直角边OA、OB为y轴,x轴建立直角坐标系,AO=b,BO=a,(a>b),Q是边OB上的动点,点Q不与B、O重合,点P是AB的中点.(1)请写出A、B的坐标;(2)若以点C、P、Q为

题目详情

以Rt△AOB的直角边OA、OB为y轴,x轴建立直角坐标系,AO=b,BO=a,(a>b),Q是边OB上的动点,点Q不与B、O重合,点P是AB的中点.
(1)请写出A、B的坐标;
(2)若以点C、P、Q为顶点的三角形与△ABC相似,这时的Q点能有几个,请说明理由并分别求出相应的Q点、P点的坐标.
题型:解答题难度:中档来源:福建省期末题

答案

解:(1)A的坐标是(0,b),B的坐标是(a,0).
(2)∵∠AOB=90°,P为AB中点,
∴AP=OP=PB,
∴∠POB=∠ABO.
如图Q点有2个, 图1中,PQ⊥OB, 则∠OQP=∠AOB=90°,
∵∠POB=∠ABO,
∴以点C、P、Q为顶点的三角形与△ABC相似,
∵PQ∥OA,
===
∴PQ=b,BQ=0Q=a,
即P(a,b),Q(a,0);
图2中,∠QPO=90°=∠AOB,
∵∠POB=∠ABO,
∴以点C、P、Q为顶点的三角形与△ABC相似,
在△AOB中,由勾股定理得:AB=,OP=
=
=
∴OQ=
即P(a,b),Q(,0).

更多内容推荐