设互不相同的直线l,m,n和平面α,β,γ,给出下列三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m

题目简介

设互不相同的直线l,m,n和平面α,β,γ,给出下列三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m

题目详情

设互不相同的直线l,m,n和平面α,β,γ,给出下列三个命题:
①若l与m为异面直线,l⊂α,m⊂β,则α∥β;
②若α∥β,l⊂α,m⊂β,则l∥m;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数为    .
题型:填空题难度:偏易来源:不详

答案

1
①中α与β可能相交,故①错;②中l与m可能异面,故②错;由线面平行的性质定理可知,l∥m,l∥n,所以m∥n,故③正确.

更多内容推荐