如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD=S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.-

题目简介

如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD=S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.-

题目详情

如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.
(1)求证:S△ABD=S△ACE
(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.
题型:解答题难度:中档来源:不详

答案

证明:(1)过B作BM⊥DA于M,过C作CN⊥EA交EA的延长线于N,如图,
∵∠BAC=∠DAE=90°,
∴∠BAD+∠CAE=180°,
∵∠CAN+∠CAE=180°,
∴∠BAD=∠CAN
∵sin∠BAD=class="stub"BM
AB
,sin∠CAN=class="stub"CN
AC

又∵AB=AC,
∴BM=CN,
∵DA=AE,
S△ABD=class="stub"1
2
DN×BM,S△ACE=class="stub"1
2
AE×CN,
∴S△ADB=S△ACE.

(2)延长AM到Q使AM=QM,连接CQ、EQ,如图,
∵AM是△ACE中线,
∴CM=EM,
∴四边形ACQE是平行四边形,
∴AC=EQ=AB,AE=CQ=AD,ACEQ,
∴∠CAE+∠AEQ=180°,
∵∠BAD+∠CAE=180°,
∴∠BAD=∠AEQ,
∵在△BAD和△QEA中
AB=EQ
∠BAD=∠AEQ
AD=AE

∴△BAD≌△QEA,
∴∠BDA=∠EAM,
∵∠DAE=90°,
∴∠NAD+∠QAE=90°,
∴∠BDA+∠NAD=90°,
∴∠DNA=180°-90°=90°,
∴MN⊥BD.

更多内容推荐