优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> (本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD;
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD;
题目简介
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD;
题目详情
(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=
,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.
题型:解答题
难度:中档
来源:不详
答案
(1)略
(2)略
(3)
解:(Ⅰ)证明:取AD中点E,连接ME,NE,
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE
平面MNE,ME
NE=E,
所以,平面MNE∥平面PCD,又MN
平面MNE
所以,MN∥平面PCD ……………4分
(Ⅱ)因为PD⊥平面ABCD,所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如图,以D为坐标原点,射线DA,DC,DP分别为
轴、
轴、
轴正半轴建立空间直角坐标系.
则D(0,0,0),A(
,0,0),
B(
,1,0),
(0,1,0), P(0,0,
)
所以
(
,0,
),
,
∵
·
=0,所以MC⊥BD ……………8分
(Ⅲ)因为ME∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE, 所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,
由已知
,所以平面PBD的法向量
M为等腰直角三角形PAD斜边中点,所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,所以DM⊥平面PAB,
所以平面PAB的法向量
(-
,0,
),设二面角A—PB—D的平面角为θ,
则
. 所以,二面角A—PB—D的余弦值为
. ……………12分
上一篇 :
(本小题满分12分)如图,已知四棱柱
下一篇 :
(本小题满分13分)已知:如图,长方体
搜索答案
更多内容推荐
(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;(Ⅱ)若F为PC的中
(本小题满分13分)如图所示,在四棱台中,底面ABCD是正方形,且底面,.(1)求异面直线与所成角的余弦值;(2)试在平面中确定一个点,使得平面;(3)在(2)的条件下,求二面角的余-高二数学
(本小题满分13分)如图,平行四边形中,,,且,正方形所在平面与平面垂直,分别是的中点.(1)求证:;(2)求证:平面;(3)求三棱锥的体积.-高三数学
对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都平行于γ;②存在平面γ,使得α、β都垂直于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l//α-高三数学
(本小题满分12分)如图,在三棱锥中,,,,,,点,分别在棱上,且,(I)求证:平面;(II)当为的中点时,求与平面所成的角的大小;(III)是否存在点使得二面角为直二面角?并说明-高三数学
已知集合A=,B=,则下列命题中正确的是()A.B.C.D.-高三数学
已知直线和平面,且,则与的位置关系是______________-高二数学
(本小题满分12分)如图所示,在直三棱柱中,、、分别是、、的中点,是上的点.(1)求直线与平面所成角的正切值的最大值;(2)求证:直线平面;(3)求直线与平面的距离.(第19题图)-高二数学
在正方体上任意选择4个顶点,它们可能是如下几何体的4个顶点,请写出所有符合题意的几何体的序号.①矩形②不是矩形的平行四边形③有三个面为等腰直角三角形,另一个面为等边三-高二数学
(本题满分12分)如图,已知所在的平面,分别为的中点,,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.-高一数学
(本小题满分12分)如图,三棱锥中,底面于,,点,点分别是的中点.(1)求证:侧面⊥侧面;(2)求点到平面的距离;(3)求异面直线与所成的角的余弦.-高三数学
(本小题满分12分)如图,四棱锥的底面是正方形,,点E在棱PB上.(1)求证:平面;(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.-高三数学
(本小题满分13分)正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否-高三数学
(本小题满分12分)如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.(1)求证:CA1⊥C1P;(2)当AP为何值时,二面角
(本小题14分)如图4,正方体中,点E在棱CD上。(1)求证:;(2)若E是CD中点,求与平面所成的角;(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,-高二数学
正三棱锥的底面边长为,高为,则此棱锥的侧面积等于()A.B.C.D.-高二数学
如图,一几何体的三视图如下:则这个几何体是()-高二数学
如图,正方体中,为棱的中点,则在平面内过点且与直线成角的直线有()A.0条B.1条C.2条D.无数条-高二数学
一个体积为的正方体的顶点都在球面上,则球的体积是()A.B.C.D.-高一数学
(本题满分分)在边长为的正方体中,是的中点,是的中点,(1)求证:∥平面;(2)求点到平面的距离;(3)求二面角的平面角大小的余弦值.-高二数学
如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是A.直线B.圆C.抛物线D.双曲线-高二数学
(本小题满分12分)已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(II)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,-高三数学
如图1,在直角梯形中,,,,,分别是的中点,现将沿折起,使平面平面(如图2),且所得到的四棱锥的正视图、侧视图、俯视图的面积总和为8.⑴求点到平面的距离;⑵求二面角的大-高二数学
如图,在长方体中,,且.(Ⅰ)求证:对任意,总有;(Ⅱ)若,求二面角的余弦值;(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.-高二数学
三棱锥,,,分别为的中点,为上一点,则的最小值是-高三数学
(本小题满分12分)如图所示,在正方体中,E为AB的中点(1)若为的中点,求证:∥面;(2)若为的中点,求二面角的余弦值;-高三数学
(本题满分13分)如图5,已知直角梯形所在的平面垂直于平面,,,.(1)在直线上是否存在一点,使得平面?请证明你的结论;(2)求平面与平面所成的锐二面角的余弦值。-高三数学
(本小题满分12分)如图,在长方体中,,为的中点,为的中点.(1)证明:;(2)求与平面所成角的正弦值.-高三数学
(14分)如图(1)是一正方体的表面展开图,MN和PB是两条面对角线,请在图(2)的正方体中将MN和PB画出来,并就这个正方体解决下面问题。(1)求证:MN//平面PBD;(2)求证:AQ⊥平面PBD
必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形,AC=2,DC=DB=,(1)求DC与AB所成角的余弦值;(2)在平面A
((本小题满分12分)在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,,E、F分别是BA、BC的中点,G是AA1上一点,且(Ⅰ)确定点G的位置;(Ⅱ)求三棱锥C1—EFG的体积.-高三数学
(本小题满分12分)如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,E是CD的中点,PA底面ABCD,PA=4(1)证明:若F是棱PB的中点,求证:EF//平面PAD;(2)求平面PAD和平
如图,在棱长都相等的正三棱柱中,分别为,的中点.⑴求证:;⑵求证:.-高二数学
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB="90°"(1)求证:AC⊥BM;(2)求
(本小题满分12分)等边和梯形所在的平面相互垂直,∥,,,为棱的中点,∥平面.(I)求证:平面平面;(II)求二面角的正弦值.-高三数学
(满分12分)已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。求证:(1)C1O∥面AB1D1;(2)A1C⊥面AB1D1。(3)若M是CC1的中点,求证:平面AB1D1
(本小题12分)如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中点。(1)求证:平面AEC⊥平面AMN;(6分)(2)求二面角M-AC-N
(本小题满分15分)如图5,在底面为直角梯形的四棱锥中,,.,,.(1)求证:;(2)求直线;(3)设点E在棱PC上,,若,求的值。-高三数学
(本小题满分14分)已知直角梯形中(如图1),,为的中点,将沿折起,使面面(如图2),点在线段上,.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值;(3)在四棱锥的棱上是-高二数学
(本小题满分14分)如图,在等腰直角中,,,,为垂足.沿将对折,连结、,使得.(1)对折后,在线段上是否存在点,使?若存在,求出的长;若不存在,说明理由;(2)对折后,求二面-高三数学
(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A"B.(Ⅰ)求证:PC⊥平面B
如图,在三棱锥P—ABC中,已知点E,F,G分别是所在棱的中点,则下面结论中正确的是:。①平面EFG//平面PBC②平面EFG平面ABC③是直线EF与直线PC所成的角④是平面PAB与平面ABC所成二-
(本小题满分l4分)如图,边长为的正方体中,是的中点,在线段上,且.(1)求异面直线与所成角的余弦值;(2)证明:面;(3)求点到面的距离.-高三数学
如图,在三棱锥中,,,侧面为等边三角形,侧棱.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求二面角的余弦值-高三数学
在空间中,设为两条不同的直线,为两个不同的平面,给定下列条件:①;②;③;④.其中可以判定的有()A.个B.个C.个D.个-高三数学
(本小题满分12分)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=(1)设M是PC上的一点,证明:平面MBD⊥平面PAD
.棱长均为1三棱锥,若空间一点满足,则的最小值为A.B.C.D.-高三数学
(1)求证:平面平面;(2)求正方形的边长;(3)求二面角的平面角的正切值.-高二数学
如图,在直角梯形中,,,,,,是的中点,是线段的中点,沿把平面折起到平面的位置,使平面,则下列命题正确的个数是。(1)二面角成角;(2)设折起后几何体的棱的中点,则平面-高三数学
已知:如图,长方体ABCD—中,AB=BC=4,,E为的中点,为下底面正方形的中心.求:(I)二面角C—AB—的正切值;(II)异面直线AB与所成角的正切值;(III)三棱锥——ABE的体积.-高一数
返回顶部
题目简介
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD;
题目详情
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.
答案
(1)略
(2)略
(3)
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE
所以,平面MNE∥平面PCD,又MN
所以,MN∥平面PCD ……………4分
(Ⅱ)因为PD⊥平面ABCD,所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如图,以D为坐标原点,射线DA,DC,DP分别为
则D(0,0,0),A(
B(
所以
∵
(Ⅲ)因为ME∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE, 所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,
由已知
M为等腰直角三角形PAD斜边中点,所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,所以DM⊥平面PAB,
所以平面PAB的法向量
则