已知f(x)=3sinωx+3cosωx(ω>0).(1)若y=f(x+θ)(0<θ<π2)是周期为π的偶函数,求ω和θ的值;(2)g(x)=f(3x)在(-π2,π3)上是增函数,求ω的最大值;并求

题目简介

已知f(x)=3sinωx+3cosωx(ω>0).(1)若y=f(x+θ)(0<θ<π2)是周期为π的偶函数,求ω和θ的值;(2)g(x)=f(3x)在(-π2,π3)上是增函数,求ω的最大值;并求

题目详情

已知f(x)=
3
sinωx+3cosωx(ω>0)

(1)若y=f(x+θ)(0<θ<
π
2
)
是周期为π的偶函数,求ω和θ的值;
(2)g(x)=f(3x)在(-
π
2
π
3
)
上是增函数,求ω的最大值;并求此时g(x)在[0,π]上的取值范围.
题型:解答题难度:中档来源:上海模拟

答案

(1)∵f(x)=
3
sinωx+3cosωx=2
3
sin(ωx+class="stub"π
3
),
∴y=f(x+θ)=2
3
sin[ω(x+θ)+class="stub"π
3
],
∵y=f(x+θ)是周期为π的偶函数,0<θ<class="stub"π
2

∴ω=2,2θ+class="stub"π
3
=kπ+class="stub"π
2
∈(class="stub"π
3
class="stub"4π
3
),
∴k=0,θ=class="stub"π
12

(2))∵g(x)=f(3x)=2
3
sin(3ωx+class="stub"π
3
)在(-class="stub"π
2
class="stub"π
3
)上是增函数,
∴由2kπ-class="stub"π
2
≤3ωx+class="stub"π
3
≤2kπ+class="stub"π
2
(k∈Z),ω>0得:
2kπ-class="stub"5π
6
≤x≤
2kπ+class="stub"π
6
(k∈Z),
∵f(3x)=2
3
sin(3ωx+class="stub"π
3
)在(-class="stub"π
2
class="stub"π
3
)上是增函数,
class="stub"π
3
class="stub"π
6
-class="stub"5π
6
≤-class="stub"π
2
,ω>0
∴0<ω≤class="stub"1
6

∴ωmax=class="stub"1
6

当ω=class="stub"1
6
时,f(x)=2
3
sin(class="stub"1
6
x+class="stub"π
3
),f(3x)=2
3
sin(class="stub"1
2
x+class="stub"π
3
).
∵x∈[0,π],
class="stub"1
2
x+class="stub"π
3
∈[class="stub"π
3
class="stub"5π
6
],
class="stub"1
2
≤sin(class="stub"1
2
x+class="stub"π
3
)≤1.
3
≤2
3
sin(class="stub"1
6
x+class="stub"π
3
)≤2
3

∴当x∈[0,π],f(3x)=2
3
sin(class="stub"1
2
x+class="stub"π
3
)∈[
3
,2
3
].

更多内容推荐