△ABC的内角A,B,C对边分别为a,b,c,若33bsinA2cosA2+acos2B2=a.(1)求角B大小;(2)设y=sinC-sinA,求y的取值范围.-数学

题目简介

△ABC的内角A,B,C对边分别为a,b,c,若33bsinA2cosA2+acos2B2=a.(1)求角B大小;(2)设y=sinC-sinA,求y的取值范围.-数学

题目详情

△ABC的内角A,B,C对边分别为a,b,c,若
3
3
bsin
A
2
cos
A
2
+acos2
B
2
=a

(1)求角B大小;
(2)设y=sinC-sinA,求y的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)
3
3
bsinclass="stub"A
2
cosclass="stub"A
2
+acos2class="stub"B
2
=a

3
3
sinBsinclass="stub"A
2
cosclass="stub"A
2
+sinAcos2class="stub"B
2
=sinA

3
6
sinB+class="stub"1+cosB
2
=1,
∴sin(B+class="stub"π
3
)=
3
2
,∴B=class="stub"π
3

(2)∵B=class="stub"π
3
,c=class="stub"2π
3
-A

∴y=sinC-sinA=sin(class="stub"2π
3
-A
)-sinA=cos(A+class="stub"π
6

又0<A<class="stub"2π
3

class="stub"π
6
<A+class="stub"π
6
class="stub"5
6
π

∴-
3
2
<y<
3
2

更多内容推荐