优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(t)=1-t1+t,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,17π12).(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π
已知函数f(t)=1-t1+t,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,17π12).(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π
题目简介
已知函数f(t)=1-t1+t,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,17π12).(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π
题目详情
已知函数
f(t)=
1-t
1+t
,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,
17π
12
).
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.
题型:解答题
难度:中档
来源:湖北
答案
(Ⅰ)
g(x)=cosx•
class="stub"1-sinx
1+sinx
+sinx•
class="stub"1-cosx
1+cosx
=
cosx•
(1-sinx)
2
cos
2
x
+sinx•
(1-cosx)
2
sin
2
x
∵
x∈(π,
class="stub"17π
12
],∴|cosx|=-cosx,|sinx|=-sinx
,
∴
g(x)=cosx•
class="stub"1-sinx
-cosx
+sinx•
class="stub"1-cosx
-sinx
=sinx+cosx-2
=
2
sin(x+
class="stub"π
4
)-2.
(Ⅱ)由
π<x≤
class="stub"17π
12
,得
class="stub"5π
4
<x+
class="stub"π
4
≤
class="stub"5π
3
.
∵sint在
(
class="stub"5π
4
,
class="stub"3π
2
]
上为减函数,在
(
class="stub"3π
2
,
class="stub"5π
3
]
上为增函数,
又
sin
class="stub"5π
3
<sin
class="stub"5π
4
,∴sin
class="stub"3π
2
≤sin(x+
class="stub"π
4
)<sin
class="stub"5π
4
(当
x∈(π,
class="stub"17π
2
]
),
即
-1≤sin(x+
class="stub"π
4
)<-
2
2
,∴-
2
-2≤
2
sin(x+
class="stub"π
4
)-2<-3
,
故g(x)的值域为
[-
2
-2,-3).
上一篇 :
若三条线段的长分别为3、5、7,
下一篇 :
函数f(x)=2sin2x+sin(2x+π6)在区
搜索答案
更多内容推荐
已知向量,m=(sinB,1-cosB),且向量m与向量n=(2,0)的夹角π3,其中A、B、C是△ABC的内角.(1)求角B的大小;(2)求cosA•cosC的取值范围.-数学
已知A,B,C为锐角△ABC的三个内角,向量m=(2-2sinA,cosA+sinA),n=(1+sinA,cosA-sinA),且m⊥n.(Ⅰ)求A的大小;(Ⅱ)求y=2sin2B+cos(2π3-
在△ABC中,a、b、c分别为角A、B、C的对边,若m=(sin2B+C2,1),n=(cos2A+72,4),且m∥n.(Ⅰ)求角A;(Ⅱ)当a=3,S△ABC=32时,求边长b和角B的大小.-数学
在△ABC中,cosAcosB>sinAsinB,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法判定-数学
已知向量a=(2sinx,3cosx),b=(sinx,2sinx),函数f(x)=a•b.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若不等式f(x)≥m对x∈[0,π2]都成立,求实数m的最大值.-数学
在△ABC中,角A,B,C所对的边分别为a,b,c.已知m=(了cosA,3sinA),n=(cosA,-了cosA),m•n=-1.(1)若a=了3,c=了,求△ABC的面积;(了)求b-了caco
在△ABC中,若(BA-BC)•(CA+BC)=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形-数学
已知a=(3sinx,cosx),b=(cosx,cosx),x∈R函数f(x)=2a•b-1;(I)f(x)的最小正周期;(Ⅱ)求f(x)在区间[-π6,π4]的最大值和最小值.-数学
已知向量a=(2,-2),b=(sin(π4+2x),cos2x)(x∈R).设函数f(x)=a•b(1)求f(-π4)的值;(2)求函数f(x)在区间[0,π2]上的值域.-数学
以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形形状为______.-数学
已知a=(53cosx,cosx),b=(sinx,2cosx),记函数f(x)=a•b+|b|2.(1)求函数f(x)的周期及f(x)的最大值和最小值;(2)求f(x)在[0,π]上的单调递增区间.
已知向量a=(sin(ωx+φ),2),b=(1,cos(ωx+φ)),ω>0,0<φ<π4.函数f(x)=(a+b)•(a-b),若y=f(x)的图象的一个对称中心与它相邻的一个对称轴之间的距离为1
设△ABC的三个内角A,B,C,向量m=(3sinA,sinB),n=(cosB,3cosA),若m•n=1+cos(A+B),则C=()A.π6B.π3C.2π3D.5π6-数学
在△ABC中,内角A,B,C的对边边长分别是a,b,c,已知a=2bcosC,则△ABC的形状为()A.锐角三角形B.等边三角形C.等腰三角形D.直角三角形-数学
已知非零向量AB与AC满足(AB|AB|+AC|AC|).BC=0且AB|AB|•AC|AC|=12.则△ABC为()A.等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形-数学
已知函数f(x)=3sinxcosx+cos2x+m,其中m为实常数.求f(x)的最小正周期、单调递增区间、所有的对称轴方程、值域.-数学
求证:1+sinα+cosα+2sinαcosα1+sinα+cosα=sinα+cosα.-数学
已知函数f(x)=sin2ωx+3sinωxsin(π2-ωx)(ω>0)的相邻两条对称轴的距离为π2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)求函数f(x)在区间[0,π2]上的取值范围.-数学
已知函数f(x)=sinxcosxsinφ+cos2xcosφ+12cos(π+φ)(0<φ<π),其图象过点(π3,14).(1)求φ的值;(2)将函数y=f(x)图象上各点向左平移π6个单位长度,
在△ABC中,角A、B、C的对边分别为a、b、c,且lga-lgb=lgcosB-lgcosA≠0(1)判断△ABC的形状;(2)设向量m=(2a,b),n=(a,-3b)且m⊥n,(m+n)(n-m
已知a,b,c分别是△ABC三个内角A,B,C的对边.①若△ABC面积为32,c=2,A=60°,求b,a的值.②若acosA=bcosB,试判断△ABC的形状,证明你的结论.-数学
设平面上有四个互异的点A、B、C、D,已知(DB+DC-2DA)•(AB-AC)=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形-数学
已知函数f(x)=sinxcosx-32cos2x,x∈R.(1)求函数f(x)的最小正周期和对称轴方程;(2)若x∈[-π2,π2],求函数f(x)的单调递增区间.-数学
已知:在△ABC中,cb=cosCcosB,则此三角形为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形-数学
在△ABC中,tanA是以-4为第三项、4为第七项的等差数列的公差,tanB是以13为第三项、9为第六项的等比数列的公比,则这个三角形是()A.钝角三角形B.等腰直角三角形C.锐角三角形D-数学
若钝角三角形的三边长是公差为1的等差数列,则最短边的取值范围是______.-数学
设函数f(x)=2cos2x+23sinxcosx-1(x∈R)的最大值为M,最小正周期为T.(Ⅰ)求M及T;(Ⅱ)写出f(x)的单调区间;(Ⅲ)10个互不相等的正数xi满足f(xi)=M,且xi<1
已知函数f(x)=(sinx+cosx)2+2cos2x-2.(I)求函数f(x)的最小正周期;(II)当x∈[π4,3π4]时,求函数f(x)的最大值,最小值.-数学
已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)求cos(α+π4)的值.-数学
△ABC的三边a,b,c满足等式acosA+bcosB=ccosC,则此三角形必是()A.以a为斜边的直角三角形B.直角三角形C.等边三角形D.其它三角形-数学
已知sinα=55,则sin4α-cos4α的值为()A.-15B.-35C.15D.35-数学
函数y=12sin2x-32cos2x+32的最小正周期为π,最大值为______.-数学
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.-数学
设函数f(x)=3sin2x+2cos2x.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调递增区间.-数学
对于集合{a1,a2…,an}和常数a0,定义集合{a1,a2,…,an}相对a0的“正弦方差W”:W=sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)n.设集合A={π4,
(2013•奉贤区一模)函数y=sin2x-sin2x的最小正周期为______.-数学
已知△ABC,如acosA=bcosB果,则该三角形是()A.等腰三角形B.直角三角形C.等腰或直角三角形D.以上答案均不正确-数学
设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定-数学
sinπ8cosπ8=______.-数学
下列各式中,值为32的是()A.2sin15°cos15°B.cos215°-sin215°C.2sin215°-1D.sin215°+cos215°-数学
函数f(x)=Asinωx(A>0,ω>0)在一个周期内图象如图所示,其最高点为M,最低点为N,与x轴正半轴交点为P,在△MNP中,∠MNP=30°,MP=2.(1)判断△MNP的形状,并给予证明;(
如图所示是水平放置的三角形的直观图,A′B′∥y轴,则原图中△ABC是()三角形.A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形-数学
在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,已知A=π3,a=3,b=1,则△ABC的形状是______.-数学
以A(5,5),B(1,4),C(4,1)为顶点的三角形是()A.直角三角形B.等腰三角形C.正三角形D.等腰直角三角形-数学
sin50°(1+3tan10°)的值为()A.3B.2C.2D.1-数学
在△ABC中,若sin2A=sin2B,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形-数学
化简:cos(π2+α)+sin(π-α)-sin(π+α)-sin(-α)=______.-数学
求函数y=sin2x+2sinxcosx+3cos2x的最大值.-数学
(1)已知sinθ+cosθ=23,求sin2θ的值.(2)化简cos40°(1+3tan10°).-数学
若已知tanα=33(0<α<2π),那么角α所有可能的值是()A.π6B.π6或76πC.π3或4π3D.π3-数学
返回顶部
题目简介
已知函数f(t)=1-t1+t,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,17π12).(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π
题目详情
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.
答案
=cosx•
∵x∈(π,
∴g(x)=cosx•
=sinx+cosx-2
=
(Ⅱ)由π<x≤
∵sint在(
又sin
即-1≤sin(x+
故g(x)的值域为[-