已知数列{an}中,a1=13,an•an-1=an-1-an(n≥2,n∈N*),数列{bn}满足bn=1an(n∈N*).(Ⅰ)求数列{bn}的通项公式;(Ⅱ)设数列{1nbn}的前n项和为Tn,

题目简介

已知数列{an}中,a1=13,an•an-1=an-1-an(n≥2,n∈N*),数列{bn}满足bn=1an(n∈N*).(Ⅰ)求数列{bn}的通项公式;(Ⅱ)设数列{1nbn}的前n项和为Tn,

题目详情

已知数列{an}中,a1=
1
3
,an•an-1=an-1-an(n≥2,n∈N*),数列{bn}满足bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
1
nbn
}
的前n项和为Tn,证明Tn
3
4
-
1
n+2
题型:解答题难度:中档来源:崇文区一模

答案

(I)当n=1时,b1=class="stub"1
a1
=3

当n≥2时,bn-bn-1=class="stub"1
an
-class="stub"1
an-1
=
an-1-an
anan-1
=1

∴数列{bn}是首项为3,公差为1的等差数列,
∴通项公式为bn=n+2;(5分)
(II)∵class="stub"1
nbn
=class="stub"1
n(n+2)

Tn=class="stub"1
1•3
+class="stub"1
2•4
+class="stub"1
3•5
++class="stub"1
n(n+2)

=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
2
-class="stub"1
4
)+(class="stub"1
3
-class="stub"1
5
)++(class="stub"1
n
-class="stub"1
n+2
)]

=class="stub"1
2
[class="stub"3
2
-(class="stub"1
n+1
+class="stub"1
n+2
)]

=class="stub"1
2
[class="stub"3
2
-class="stub"2n+3
(n+1)(n+2)
]

class="stub"2n+3
(n+1)(n+2)
>class="stub"2n+2
(n+1)(n+2)
=class="stub"2
n+2

-class="stub"2n+2
(n+1)(n+2)
<-class="stub"2
n+2

class="stub"1
2
[class="stub"3
2
-class="stub"2n+3
(n+1)(n+2)
<class="stub"1
2
[class="stub"3
2
-class="stub"2
n+2
]=class="stub"3
4
-class="stub"1
n+2

Tn<class="stub"3
4
-class="stub"1
n+2
.(13分)

更多内容推荐