数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N+).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn=n(n+1)an,求数列{bn}的前n

题目简介

数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N+).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn=n(n+1)an,求数列{bn}的前n

题目详情

数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N+).
(Ⅰ)证明:数列{
2n
an
}
是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=n(n+1)an,求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:安徽模拟

答案

(Ⅰ)证明:由已知可得
an+1
2n+1
=
an
an+2n

2n+1
an+1
=
2n
an
+1

2n+1
an+1
-
2n
an
=1

∴数列{
2n
an
}
是公差为1的等差数列(5分)
(Ⅱ)由(Ⅰ)知
2n
an
=class="stub"2
a1
+(n-1)×1=n+1

an=
2n
n+1
(8分)
(Ⅲ)由(Ⅱ)知bn=n•2n
Sn=1•2+2•22+3•23++n•2n
2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1(10分)
相减得:-Sn=2+22+23++2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1
=2n+1-2-n•2n+1(12分)
∴Sn=(n-1)•2n+1+2

更多内容推荐