定义一种新运算:观察下列式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=_________;(2)若a≠b,那么
解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.
题目简介
定义一种新运算:观察下列式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=_________;(2)若a≠b,那么
题目详情
(1)请你想一想:a⊙b= _________ ;
(2)若a≠b,那么a⊙b _________ b⊙a(填入“=”或“≠”)
(3)若a⊙(﹣2b)=4,请计算 (a﹣b)⊙(2a+b)的值.
答案
解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,
∴a⊙b=4a+b;
(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),
∵a≠b,
∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,
∴a⊙b≠b⊙a;
(3)∵a⊙(﹣2b)=4a﹣2b=4,
∴2a﹣b=2,
(a﹣b)⊙(2a+b)
=4(a﹣b)+(2a+b)
=4a﹣4b+2a+b,
=6a﹣3b,
=3(2a﹣b)
=3×2=6.
故答案为:(1)4a+b,(2)≠,(3)6.